
∂a∂i user manual
Corresponding to version 2.0.0

Contents

1 Introduction 6
1.1 Getting help . 6
1.2 Helping us . 6

2 Suggested workflow 6

3 Importing data 7
3.1 Frequency spectrum file format . 7
3.2 SNP data format . 8
3.3 SNP data methods . 8

4 Manipulating spectra 9
4.1 Summary statistics . 10

4.1.1 Single-population statistics . 10
4.1.2 Multi-population statistics . 10

4.2 Folding . 10
4.3 Masking . 11
4.4 Marginalizing . 11
4.5 Projection . 11
4.6 Sampling . 11
4.7 Scrambling . 12

5 Specifying a model 12
5.1 Implementation . 12
5.2 Units . 14
5.3 Fixed θ . 14
5.4 Ancient sequences . 14

1

6 Simulation and fitting 21
6.1 Grid sizes and extrapolation . 21

6.1.1 Grid choice . 21
6.2 Likelihoods . 23
6.3 Fitting . 23

6.3.1 Parameter bounds . 23
6.4 Fixing parameters . 24
6.5 Which optimizer should I use? . 24

7 Plotting 24
7.1 Essential matplotlib commands . 25
7.2 1D comparison . 25
7.3 2D spectra . 26
7.4 2D comparison . 26
7.5 3D spectra . 26
7.6 3D comparison . 26
7.7 Residuals . 26

8 Bootstrapping 29
8.1 Interacting with ms . 29

9 Uncertainty analysis 30

10 Likelihood ratio test 31

11 Triallelic spectra 32
11.1 Built in models . 32
11.2 Faster triallele with Cython . 32

12 DFE Inference 32
12.1 Example dataset . 33
12.2 Demographic inference . 33
12.3 Pre-computing of the SFS for many γ . 34
12.4 Fitting a DFE . 35

12.4.1 Fitting simple DFEs . 35
12.4.2 Fitting complex DFEs . 36

12.5 Fitting joint DFEs . 37

13 Inbreeding 38

14 Polyploid Subgenomes 39

2

15 Installation 40
15.1 Dependencies . 40
15.2 Installing from source . 40

16 Frequently asked questions 40

3

Example code

1 Example of SNP file format . 8
2 Bottleneck: At time TF + TB in the past, an equilibrium population goes

through a bottleneck of depth nuB, recovering to relative size nuF. 16
3 Exponential growth: At time T in the past, an equilibrium population

begins growing exponentially, reaching size nu at present. 16
4 Split with migration: At time T in the past, two population diverge from an

equilibrium population, with relative sizes nu1 and nu2 and with symmetric
migration at rate m. 16

5 Two-population isolation-with-migration: The ancestral population splits
into two, with a fraction s going into pop 1 and fraction 1-s into pop 2. The
populations then grow exponentially, with asymmetric migration allowed be-
tween them. 17

6 Out-of-Africa model from Gutenkunst (2009): This model involves
a size change in the ancestral population, a split, another split, and then
exponential growth of populations 1 and 2. (The from dadi import line
imports those modules from the dadi namespace into the local namespace, so
we don’t have to type dadi. to access them.) 18

7 Fixed θ: A split demographic model function with a fixed value of θ=137
for derived population 1. The free parameters are the sizes of the ancestral
pop, nuA, and derived pop 2, nu2, (relative to derived pop 1), along with the
divergence time T between the two derived pops. 19

8 Settlement-of-New-World model from Gutenkunst (2009): Because
∂a∂i is limited to 3 simultaneous populations, we need to integrate out the
African population, using Numerics.trapz. This model also employs a fixed
θ, and ancillary parameters passed in using the third argument. 20

../../examples/DFE/example1D.py . 33

../../dadi/DFE/DemogSelModels.py . 34

../../examples/DFE/example1D.py . 34

../../examples/DFE/example1D.py . 35

../../examples/DFE/example1D.py . 35

../../examples/DFE/example1D.py . 35

../../examples/DFE/example1D.py . 35

../../examples/DFE/example1D.py . 36

../../examples/DFE/example1D.py . 36

../../examples/DFE/example1D.py . 36

../../examples/DFE/example2D.py . 37

../../examples/DFE/example2D.py . 37

../../examples/DFE/example2D.py . 37

../../examples/DFE/example2D.py . 37
9 Inbreeding: Standard neutral model for a diploid population with inbreeding

level F. 38

4

10 Diploid-Tetraploid Isolation Model: An ancestral population splits at
time T into a diploid (pop 1) and autotetraploid (pop 2) population of sizes nu1
and nu2, respectively. The populations have separate inbreeding coefficients
F1 and F2. 39

11 Two subgenomes: At time T in the past, an equilibrium population du-
plicates (autopolyploidy) and the subgenomes exchange genes symmetrically
at a rate of m. The SFS for the subgenomes are then combined with the
combine_pops function to create a single, polyploid SFS. 39

5

1 Introduction

Welcome to ∂a∂i!
∂a∂i is a powerful software tool for simulating the joint frequency spectrum (FS) of

genetic variation among multiple populations and employing the FS for population-genetic
inference. An important aspect of ∂a∂i is its flexibility, particularly in model specification,
but with that flexibility comes some complexity. ∂a∂i is not a GUI program, nor can ∂a∂i
be run usefully with a single command at the command-line; using ∂a∂i requires at least
rudimentary Python scripting. Luckily for us, Python is a beautiful and simple language.
Together with a few examples, this manual will quickly get you productive with ∂a∂i even
if you have no prior Python experience.

1.1 Getting help

Please join the dadi-user Google groups: https://groups.google.com/group/dadi-user.
dadi-user is the preferred forum for asking questions and getting help. Before posting a
question, take a moment to look through the dadi-user archives to see if your question
has already been addressed. There are example scripts included in the source distribution:
http://dadi.googlecode.com/svn/trunk/examples.

1.2 Helping us

As we do our own research, ∂a∂i is constantly improving. Our philosophy is to include in
∂a∂i any code we develop for our own projects that may useful to others. Similarly, if you
develop ∂a∂i-related code that you think might be useful to others, please let us know so we
can include it with the main distribution. If you have particular needs that modification to
∂a∂i may fulfill, please contact the developers and we may be able to help.

2 Suggested workflow

One of Python’s major strengths is its interactive nature. This is very useful in the ex-
ploratory stages of a project: for examining data and testing models. If you intend to use
∂a∂i’s plotting commands, which rely on matplotlib, they you’ll almost certainly want
to install IPython, an enhanced Python shell that fixes several difficulties with interactive
plotting using matplotlib.

My preferred workflow involves one window editing a Python script (e.g. script.py) and
another running an IPython session (started as ipython -pylab). In the IPython session I
can interactively use ∂a∂i, while I record my work in script.py. IPython’s %run script.py

magic command lets me apply changes I’ve made to script.py to my interactive session.
(Note that you will need to reload other Python modules used by your script if you change
them.) Once I’m sure I’ve defined my model correctly and have a useful script, I run that

6

https://groups.google.com/group/dadi-user
http://dadi.googlecode.com/svn/trunk/examples

from the command line (python script.py) for extended optimizations and other long
computations.

Note that to access ∂a∂i’s functions, you will need to import dadi at the start of your
script or interactive session.

If you are comfortable with Matlab, this workflow should seem very familiar. Moreover
the numpy, scipy, and matplotlib packages replicate much of Matlab’s functionality.

3 Importing data

∂a∂i represents frequency spectra using dadi.Spectrum objects. As described in section 4,
Spectrum objects are subclassed from numpy.masked_array and thus can be constructed
similarly The most basic way to create a Spectrum is manually:
fs = dadi.Spectrum ([0 ,100 ,20 ,10 ,1 ,0])

This creates a Spectrum object representing the FS from a single population, from which we
have 5 samples. (The first and last entries in fs correspond to mutations observed in zero or
all samples. These are thus not polymorphisms, and by default ∂a∂i masks out those entries
so they are ignored.)

For nontrivial data sets, entering the FS manually infeasible, so we will focus on automatic
methods of generating a Spectrum object. The most direct way is to load a pre-generated
FS from a file, using
fs = dadi.Spectrum.from_file(filename)

The appropriate file format is detailed in the next section.

3.1 Frequency spectrum file format

∂a∂i uses a simple file format for storing the FS. Each file begins with any number of
comment lines beginning with #. The first non-comment line contains P integers giving the
dimensions of the FS array, where P is the number of populations represented. For a FS
representing data from 4x4x2 samples, this would be 5 5 3. (Each dimension is one larger
than the number of samples, because the number of observations can range, for example,
from 0 to 4 if there are 4 samples, for a total of 5 possibilities.) On the same line, the string
folded or unfolded denoting whether or not the stored FS is folded.

The actual data is stored in a single line listing all the FS elements separated by spaces,
in the order fs[0,0,0] fs[0,0,1] fs[0,0,2]. . . fs[0,1,0] fs[0,1,1]. . . . This is followed by a single line
giving the elements of the mask in the same order as the data, with 1 indicating masked and
0 indicating unmasked.

The file corresponding to the Spectrum fs can be written using the command:
fs.to_file(filename)

7

Human Chimp Allele1 YRI CEU Allele2 YRI CEU Gene Position

ACG ATG C 29 24 T 1 0 abcb1 289

CCT CCT C 29 23 G 3 2 abcb1 345

Listing 1: Example of SNP file format

3.2 SNP data format

As a convenience, ∂a∂i includes several methods for generating frequency spectra directly
from SNP data. That relevant SNP file format is described here. An large example can be
found in the examples/fs_from_data/data.txt file included with the ∂a∂i source distri-
bution, and a small example is shown in Listing 1.

The data file begins with any number of comment lines that being with #. The first
parsed line is a column header line. Whitespace is used to separate entries within the table,
so no spaces are allowed within any entry. Individual rows make be commented out using #.

The first column contains the in-group reference sequence at that SNP, including the
flanking bases. If the flanking bases are unknown, they can be denoted by -. The header
label is arbitrary.

The second column contains the aligned outgroup reference sequence at that SNP, in-
cluding the flanking bases. Unknown entries can be denoted by -. The header label is
arbitrary.

The third column gives the first segregating allele. The column header must be exactly
Allele1.

Then follows an arbitrary number of columns, one for each population, each giving the
number of times Allele1 was observed in that population. The header for each column should
be the population identifier.

The next column gives the second segregating allele. The column header must be exactly
Allele2.

Then follows one column for each population, each giving the number of times Allele2
was observed in that population. The header for each column should be the population
identifier, and the columns should be in the same order as for the Allele1 entries.

Then follows an arbitrary number of columns which will be concatenated with _ to assign
a label for each SNP.

The Allele1 and Allele2 headers must be exactly those values because the number of
columns between those two is used to infer the number of populations in the file.

3.3 SNP data methods

The method Misc.make_data_dict reads the above SNP file format to generate a Python
data dictionary describing the data:
dd = Misc.make_data_dict(filename)

From this dictionary, the method Spectrum.from_data_dict can be used to create a Spectrum.
fs = Spectrum.from_data_dict(dd, pop_ids =[’YRI’, ’CEU’],

8

projections =[10, 12],

polarized=True)

The pop_ids argument specifies which populations to use to create the FS, and their order.
projections denotes the population sample sizes for the resulting FS. (Recall that for a
diploid organism, assuming random mating, we get two samples from each individual.) Note
that the total number of calls to Allele1 and Allele2 in a given population need not be the
same for each SNP. When constructing the Spectrum each SNP will be projected down to the
requested number of samples in each population. (Note that SNPs cannot be projected up, so
SNPs without enough calls in any population will be ignored.) polarized specifies whether
∂a∂i should use outgroup information to polarize the SNPs. If polarized=True, SNPs with-
out outgroup information, or with that information - will be ignored. If polarized=False,
outgroup information will be ignored and the resulting Spectrum will be folded.

If your data have missing calls for some individuals, projecting down to a smaller sample
size will increase the number of SNPs you can use for analysis. On the other hand, some
fraction of the SNPs will now project down to frequency 0, and thus be uniformative. As a
rule of thumb, we often choose our projection to maximize the number of segregating sites
in our final fs (assessed via fs.S()), although we have not formally tested whether this
maximizes statistical power.

The method Spectrum.from_data_dict_corrected polarizes the SNPs using outgroup
information and applies a statistical correction for multiple mutations described by Hernan-
dez et al. [1]. Any SNPs without full trinucleotide ingroup and outgroup sequences will be
ignored, as well as SNPs in which the flanking bases are not conserved between ingroup and
outgroup, or in which the outgroup allele is not one of the segregating alleles. The correction
uses the expected number of substitutions per site, the trinucleotide mutation rate matrix,
and a stationary trinucleotide distribution. These are summarized in a table of misidentifi-
cation probabilities that can be calculated using Misc.make_fux_table. (It should also be
possible to develop a correction using only the single-site transition matrix. If this would be
helpful, please contact the developers of ∂a∂i.)

4 Manipulating spectra

Frequency spectra are stored in dadi.Spectrum objects. Computationally, these are a sub-
class of numpy.masked_array, so most of the standard array manipulation techniques can
be used. (In the examples here, I will typically be considering two-dimensional spectra,
although all these features apply to higher-dimensional spectra as well.)

You can do arithmetic with Spectrum objects:
fs3 = fs1 + fs2

fs2 = fs1 * 2

Note that most operations involving two Spectrum objects only make sense if they correspond
to data with the same sample sizes.

Standard indexing and slicing operations work as well. For example, to access the counts
corresponding to 3 observations in population 1 and 5 observations in population 2, simply

9

counts = fs[3,5]

More complicated slices are also possible. The slice notation : indicates taking all corre-
sponding entries. For example, to access the slice of the Spectrum corresponding to entries
with 2 derived allele observations in population 2, take
slice = fs[:,2]

4.1 Summary statistics

The frequency spectrum encompasses many common summary statistics, and ∂a∂i provides
methods to calculate them from Spectrum objects.

4.1.1 Single-population statistics

Watterson’s theta can be calculated as
thetaW = fs.Watterson_theta ()

The expected heterozygosity π assuming random mating is
pi = fs.pi()

Tajima’s D is
D = fs.Tajima_D ()

4.1.2 Multi-population statistics

The number of segregating sites S is simply the sum of all entries in the FS (except for the
absent-in-all and derived-in-all entries). This can be calculated as
S = fs.S()

Wright’s FST can be calculated as
Fst = fs.Fst()

This estimate of Fst assumes random mating, because the FS does not store heterozygote.
Calculation is by the method of Weir and Cockerham [2]. For a single SNP, the relevant
formula is at the top of page 1363. To combine results between SNPs, we use the weighted
average indicated by equation 10.

4.2 Folding

By default, ∂a∂i considers the data in the Spectrum to be polarized, i.e. that the ancestral
state of each variant is known. In some cases, however, this may not be possible, and the FS
must be folded, indicating that only the minor allele frequency is known. To fold a Spectrum

object, simply
folded = fs.fold()

The Spectrum object will record the fact that it has been folded, so that the likelihood and
optimization machinery can automatically fold model spectra when the data are folded.

10

4.3 Masking

Finally, Spectrum arrays are masked, i.e. certain entries can be set to be ignored. Most
typically, the ignored entries are the two corners: [0,0] and [n1,n2], corresponding to
variants observed in zero samples or in all samples. More sophisticated masking is possible,
however. For example, if your calling algorithm is such that singletons in population 1 cannot
be confidently called, you may want to ignore those entries of the FS in your analysis. To
do so, simply
fs.mask [1,:] = True

Note that care must be taken when doing arithmetic with Spectrum objects that are masked
in different ways.

4.4 Marginalizing

If one has a multidimensional Spectrum it may be useful to examine the marginalized
Spectrum corresponding to a subset of populations. To do so, use the marginalize method.
For example, consider a three-dimensional Spectrum consisting of data from populations A,
B, and C. To consider the marginal two dimensional spectrum for populations A and C, we
need marginalize over population B.
fsAC = fsABC.marginalize ([1])

And to consider the marginal one-dimensional FS for population B, we marginalize over
populations A and C.
fsB = fsABC.marginalize ([0 ,2])

Note that the argument to marginalize is a list of dimensions to marginalize over, indexed
from 0.

4.5 Projection

One can also project an FS down from a larger sample size to a smaller sample size. Implicitly,
this involves averaging over all possible re-samplings of the larger sample size data. This is
very often done in the case of missing data: if some sites could not be called in all individuals,
one can set a lower bound on the number of successful calls necessary to include a SNP in
the analysis; SNPs with more successful calls can then be projected down to that number of
calls.

In ∂a∂i, this is implemented with the project method. For example, to project a two-
dimensional FS down to sample sizes of 14 and 26, use
proj = fs.project ([14 ,26])

4.6 Sampling

One can simulate Poisson sampling from an FS using the sample method.
sample = fs.sample ()

11

Each entry in the sample output FS will have a Poisson number of counts, with mean
given by the corresponding entry in fs. If all sites are completely unlinked, this is a proper
parametric bootstrap from your FS.

4.7 Scrambling

Occasionally, one may wish to ask whether the FS really represents samples from two popula-
tions or rather subsamples from a single population. A rough check of this is to consider what
the FS would look like if the population identifiers were scrambled amongst the individuals
for whom you have data. The scramble method will do this.
scrambled = fs.scramble ()

As an example, one could consider whether the FS for JPT and CHB shows evidence of
differentiation between the two populations. Note that this is an informal test, and we have
not developed the theory to assign statistical significance to the results. It is, nevertheless,
a useful guide.

5 Specifying a model

A demographic model specifies population sizes and migration rates as a function of time,
and it also includes discrete events such as population splittings and admixture. Unlike many
coalescent-based simulators, demographic models in ∂a∂i are specified forward in time. Also
note that all population sizes within a demographic model are specified relative to some
reference population size Nref.

One important subtlety is that within the demographic model function, by default the
mutation parameter θ = 4Nrefµ is set to 1. This is because the optimal θ for a given
model and set of data is trivial to calculate, so ∂a∂i by default does this automatically in
optimization (so-called “multinomial” optimization). See Section 5.3 for how to fix theta to
a particular value in a demographic model.

5.1 Implementation

Demographic models are specified by defining a Python function. This function employs
various methods defined by ∂a∂i to specify the demography.

When defining a demographic function the arguments must be specified in a particular
order. The first argument must be a list of free parameters that will be optimized. The second
argument (usually called ns) must be a list of sample sizes. The last argument (usually called
pts) must be the number of grid points used in the calculation. Any additional arguments
(between the second and last) can be used to pass additional non-optimized parameters,
using the func_args argument of the optimization methods. (See Listing 8 for an example.)

The demographic model function tracks the evolution of φ the density of mutations within
the populations at given frequencies. This continuous density φ is approximated by its values

12

on a grid of points, represented by the numpy array phi. Thus the first step in a demographic
model is to specify that grid:
xx = dadi.Numerics.default_grid(pts)

Here pts is the number of grid points in each dimension for representing φ.
All demographic models employed in ∂a∂i must begin with an equilibrium population of

non-zero size. φ for such a population can be generated using the method PhiManip.phi_1D.
The most important parameter to this method is nu, which specifies the relative size of this
ancestral population to the reference population. Most often, the reference population is the
ancestral, so nu defaults to 1.

Once we’ve created an initial φ, we can begin to manipulate it. First, we can split φ to
simulate population splits. This can be done using the methods PhiManip.phi_1D_to_2D,
PhiManip.phi_2D_to_3D_split_1, and PhiManip.phi_2D_to_3D_split_2. These meth-
ods take in an input φ of either one or two dimensions, and output a φ of one greater
dimension, corresponding to addition of a population. The added population is the last
dimension of φ. For example, if PhiManip.phi_2D_to_3D_split_1 is used, population 1
will split into populations 1 and 3. phi_2D_to_3D_admix is a more advanced version of the
2D_to_3D methods that incorporates admixture. In this method, the proportions of pop 3
that are derived from pop 1 and pop 2 may be specified.

Direct admixture events can be specified using the methods phi_2D_admix_1_into_2,
phi_2D_admix_2_into_1, phi_3D_admix_1_and_2_into_3, phi_3D_admix_1_and_3_into_2,
and phi_3D_admix_2_and_3_into_1. These methods do not change the dimensionality of
φ, but rather simulate discrete admixture events. For example, phi_2D_admix_1_into_2
can be used to simulate a large discrete influx of individuals from pop 1 into pop 2. For
example, this might model European (pop 1) admixture into indigenous Americans (pop 2).
Note that the PhiManip methods for admixture can compromise the effectiveness of extrapo-
lation for evaluating entries in the frequency spectrum corresponding to SNPs private to the
recipient population. If your model involves admixture, you may obtain better accuracy by
avoiding extrapolation and instead setting pts_l to be a list of length 1. Alternatively, if the
admixture is the final event in your model, you can model admixture using the admix_props
arguments for Spectrum.from_phi.

Along with these discrete manipulations of φ, we have the continuous transformations
as time passes, due to genetic drift at different population sizes or migration. This is
handled by Integration methods, Integration.one_pop, Integration.two_pops, and
Integration.three_pops. Each of these methods must be used with a phi of the appro-
priate dimensionality. Integration.one_pop takes two crucial parameters, T and nu. T

specifies the time of this integration and nu specifies the size of this population relative to
the reference during this time period. Integration.two_pop takes an integration time T,
relative sizes for populations 1 and 2 nu1 and nu2, and migration parameters m12 and m21.
The migration parameter m12 specifies the rate of migration from pop 2 into pop 1. It is
equal to the fraction of individuals each generation in pop 1 that are new migrants from pop
2, times the 2Nref. Integration.three_pops is a straightforward extension of two_pops
but now there are three population sizes and six migration parameters.

13

Note that for all these methods, the integration time T must be positive. To ensure
this, it is best to define your time parameters as the interval between events rather than the
absolute time of those events. For example, a size change happened a time Tsize before a
population split Tsplit in the past.

Importantly, population sizes and migration rates (and selection coefficients) may be
functions of time. This allows one to simulate exponential growth and other more complex
scenarios. To do so, simply pass a function that takes a single argument (the time) and
returns the given variable. The Python lambda expression is a convenient way to do this.
For example, to simulate a single population growing exponentially from size nu0 to size nuF

over a time T, one can do:
nu_func = lambda t: nu0 * (nuF/nu0)**(t/T)

phi = Integration.one_pop(nu=nu_func , T=T)

Numerous examples are provided in Listings 2 through 8.

5.2 Units

The units ∂a∂i uses are slightly different than those used by some other programs, ms in
particular.

In ∂a∂i, θ = 4Nrefµ, as is typical.
Times are given in units of 2Nref generations. This differs from ms, where time is in units

of 4Nref generations. So to convert from a time in ∂a∂i to a time in ms, divide by 2.
Migration rates are given in units of Mij = 2Nrefmij. Again, this differs from ms, where

the scaling factor is 4Nref generations. So to get equivalent migration (mij) in ms for a given
rate in ∂a∂i, multiply by 2.

5.3 Fixed θ

If you wish to set a fixed value of θ = 4N0µ in your analysis, that information must be
provided to the initial φ creation function and the Integration functions. For an example,
see Listing 7, which defines a demographic model in which θ is fixed to be 137 for derived
population 1. Derived pop 1 is thus the reference population for specifying all population
sizes, so its size is set to 1 in the call to Integration.two_pops. When fixing θ, every
Integration function must be told what the reference θ is, using the option theta0. In
addition, the methods for creating an initial φ distribution must be passed the appropriate
value of θ using the theta0 option.

5.4 Ancient sequences

If you have DNA samples from multiple timepoints, you can construct a frequency spectrum
in which different axes correspond to samples from different timepoints. To support this
in ∂a∂i, the Integration.one_pop, two_pops, and three_pops support freeze arguments.
When True, these arguments will “freeze” a particular population so that it no longer changes
(although the relationship between SNPs in the frozen and unfrozen populations will change).

14

Note that because time in ∂a∂i models is in genetic units, you need to be careful in how you
specify the time of collection of your frozen sample. In this case, you likely want to run a
model that explicitly includes θ as a parameter (see Section 5.3), so that you can convert
from physical to genetic units within the model function.

15

def bottleneck(params , ns, pts):

nuB ,nuF ,TB ,TF = params

xx = Numerics.default_grid(pts)

phi = PhiManip.phi_1D(xx)

phi = Integration.one_pop(phi , xx, TB, nuB)

phi = Integration.one_pop(phi , xx, TF, nuF)

fs = Spectrum.from_phi(phi , ns , (xx ,))

return fs

Listing 2: Bottleneck: At time TF + TB in the past, an equilibrium population goes through
a bottleneck of depth nuB, recovering to relative size nuF.

def growth(params , ns, pts):

nu ,T = params

xx = Numerics.default_grid(pts)

phi = PhiManip.phi_1D(xx)

nu_func = lambda t: numpy.exp(numpy.log(nu) * t/T)

phi = Integration.one_pop(phi , xx, T, nu_func)

fs = Spectrum.from_phi(phi , ns , (xx ,))

return fs

Listing 3: Exponential growth: At time T in the past, an equilibrium population begins
growing exponentially, reaching size nu at present.

def split_mig(params , ns, pts):

nu1 ,nu2 ,T,m = params

xx = Numerics.default_grid(pts)

phi = PhiManip.phi_1D(xx)

phi = PhiManip.phi_1D_to_2D(xx , phi)

phi = Integration.two_pops(phi , xx, T, nu1 , nu2 , m12=m, m21=m)

fs = Spectrum.from_phi(phi , ns , (xx,xx))

return fs

Listing 4: Split with migration: At time T in the past, two population diverge from an
equilibrium population, with relative sizes nu1 and nu2 and with symmetric migration at
rate m.

16

def IM(params , ns , pts):

s,nu1 ,nu2 ,T,m12 ,m21 = params

xx = Numerics.default_grid(pts)

phi = PhiManip.phi_1D(xx)

phi = PhiManip.phi_1D_to_2D(xx , phi)

nu1_func = lambda t: s * (nu1/s)**(t/T)

nu2_func = lambda t: (1-s) * (nu2/(1-s))**(t/T)

phi = Integration.two_pops(phi , xx , T, nu1_func , nu2_func ,

m12=m12 , m21=m21)

fs = Spectrum.from_phi(phi , ns , (xx,xx))

return fs

Listing 5: Two-population isolation-with-migration: The ancestral population splits
into two, with a fraction s going into pop 1 and fraction 1-s into pop 2. The populations
then grow exponentially, with asymmetric migration allowed between them.

17

from dadi import Numerics , PhiManip , Integration , Spectrum

def OutOfAfrica(params , ns, pts):

nuAf , nuB , nuEu0 , nuEu , nuAs0 , nuAs ,

mAfB , mAfEu , mAfAs , mEuAs , TAf , TB , TEuAs = params

xx = Numerics.default_grid(pts)

phi = PhiManip.phi_1D(xx)

phi = Integration.one_pop(phi , xx, TAf , nu=nuAf)

phi = PhiManip.phi_1D_to_2D(xx , phi)

phi = Integration.two_pops(phi , xx, TB, nu1=nuAf , nu2=nuB ,

m12=mAfB , m21=mAfB)

phi = PhiManip.phi_2D_to_3D_split_2(xx, phi)

nuEu_func = lambda t: nuEu0 *(nuEu/nuEu0)**(t/TEuAs)

nuAs_func = lambda t: nuAs0 *(nuAs/nuAs0)**(t/TEuAs)

phi = Integration.three_pops(phi , xx , TEuAs , nu1=nuAf ,

nu2=nuEu_func , nu3=nuAs_func ,

m12=mAfEu , m13=mAfAs , m21=mAfEu ,

m23=mEuAs , m31=mAfAs , m32=mEuAs)

fs = Spectrum.from_phi(phi , (n1 ,n2,n3), (xx,xx ,xx))

return fs

Listing 6: Out-of-Africa model from Gutenkunst (2009): This model involves a size
change in the ancestral population, a split, another split, and then exponential growth of
populations 1 and 2. (The from dadi import line imports those modules from the dadi

namespace into the local namespace, so we don’t have to type dadi. to access them.)

18

def fixed_theta(params , ns, pts):

nuA , nu2 , T = params

theta1 = 137

xx = dadi.Numerics.default_grid(pts)

phi = dadi.PhiManip.phi_1D(xx , nu=nuA , theta0=theta1)

phi = dadi.PhiManip.phi_1D_to_2D(xx, phi)

phi = dadi.Integration.two_pops(phi , xx, T, nu1=1, nu2=nu2 ,

theta0=theta1)

fs = dadi.Spectrum.from_phi(phi , ns, (xx,xx))

return fs

Listing 7: Fixed θ: A split demographic model function with a fixed value of θ=137 for
derived population 1. The free parameters are the sizes of the ancestral pop, nuA, and derived
pop 2, nu2, (relative to derived pop 1), along with the divergence time T between the two
derived pops.

19

from dadi import Numerics , PhiManip , Integration , Spectrum

def NewWorld(params , ns , fixed_params , pts):

nuEu0 , nuEu , nuAs0 , nuAs , nuMx0 , nuMx ,

mEuAs , TEuAs , TMx , fEuMx = params

theta0 , nuAf , nuB , mAfB , mAfEu , mAfAs , TAf , TB = fixed_params

xx = Numerics.default_grid(pts)

phi = PhiManip.phi_1D(xx)

phi = Integration.one_pop(phi , xx , TAf , nu=nuAf)

phi = PhiManip.phi_1D_to_2D(xx , phi)

phi = Integration.two_pops(phi , xx , TB , nu1=nuAf , nu2=nuB ,

m12=mAfB , m21=mAfB)

Integrate out the YRI population

phi = Numerics.trapz(phi , xx , axis =0)

phi = PhiManip.phi_1D_to_2D(xx , phi)

nuEu_func = lambda t: nuEu0 *(nuEu/nuEu0)**(t/(TEuAs+TMx))

nuAs_func = lambda t: nuAs0 *(nuAs/nuAs0)**(t/(TEuAs+TMx))

phi = Integration.two_pops(phi , xx , TEuAs ,

nu1=nuEu_func , nu2=nuAs_func ,

m12=mEuAs , m21=mEuAs)

phi = PhiManip.phi_2D_to_3D_split_2(xx , phi)

Initial population sizes for this stretch of integration

nuEu0 = nuEu_func(TEuAs)

nuAs0 = nuAs_func(TEuAs)

nuEu_func = lambda t: nuEu0 *(nuEu/nuEu0)**(t/TMx)

nuAs_func = lambda t: nuAs0 *(nuAs/nuAs0)**(t/TMx)

nuMx_func = lambda t: nuMx0 *(nuMx/nuMx0)**(t/TMx)

phi = Integration.three_pops(phi , xx , TMx ,

nu1=nuEu_func , nu2=nuAs_func ,

nu3=nuMx_func ,

m12=mEuAs , m21=mEuAs ,

m23=mAsMx , m32=mAsMx)

phi = PhiManip.phi_3D_admix_1_and_2_into_3(phi , fEuMx , 0,

xx,xx,xx)

fs = Spectrum.from_phi(phi , ns , (xx ,xx ,xx))

Apply our theta0. (All previous methods default to

theta0 =1.)

return theta0*fs

Listing 8: Settlement-of-New-World model from Gutenkunst (2009): Because ∂a∂i
is limited to 3 simultaneous populations, we need to integrate out the African population,
using Numerics.trapz. This model also employs a fixed θ, and ancillary parameters passed in
using the third argument.

20

6 Simulation and fitting

6.1 Grid sizes and extrapolation

To simulate the frequency spectrum, ∂a∂i solves a partial differential equation, approxi-
mating the solution using a grid of points in population frequency space (the phi array).
Importantly, a single evaluation of the frequency spectrum with a fixed grid size is apt to
be inaccurate, because computational limits mean the grid must be relatively coarse. To
overcome this, ∂a∂i solves the problem at a series (typically 3) of grid sizes and extrapolates
to an infinitely fine grid. To transform the demographic model function you have created
(call it my_demo_func) into a function that does this extrapolation, wrap it using a call to
Numerics.make_extrap_func, e.g.:
my_extrap_func = Numerics.make_extrap_func(my_demo_func)

Having done this, the final argument to my_extrap_func is now a sequence of grid sizes,
which will be used for extrapolation. In our experience, good results are obtained by setting
the smallest grid size slightly larger than the largest population sample size. For example, if
you have sample sizes of 16, 24, and 12 samples in the three populations you’re working with,
a good choice of grid sizes is probably pts_l = [40,50,60]. This can be altered depending
on your usage. For example, if you are fitting a complex slow model, it may speed up
the analysis considerably to first run an optimization at small grid sizes (even less than
the maximum number of samples). This should get your parameter values approximately
correct. They can be refined by running another optimization with a finer grid.

A simulated frequency spectrum is thus obtained by calling
model = my_extrap_func(params , ns, pts_l)

Here ns is the sequence of sample sizes for the populations in the model, params is the model
parameters, and pts_l is the grid sizes.

6.1.1 Grid choice

As of version 1.5.0, the default grid in ∂a∂i has points exponentially clustered toward x = 0
and x = 1. This grid was suggested by Simon Gravel. The parameter crwd controls how
closely grid points crowd the endpoints of the interval.

We have performed some empirical investigations of the best value for crwd, although
these results cannot be considered definitive. We ran simulations for a variety of models and
parameter values for a variety of sample sizes. Denoting the largest sample size as n, we
asked which value of crwd yielded the most accurate FS with pts_l = [n, n+10, n+20].
Results are shown in Fig. 1. It is evident that the best value for crwd is lower for smaller
sample sizes. The red lines are empirical functions which approximate the optimum. These
are implemented in Numerics.estimate_best_exp_grid_crwd. Fig. 2 demonstrates that
the optimum value of crwd doesn’t depend strongly on the number of grid points used for
integration. Unless you need absolute top performance, the default value of crwd=8 will
probably be sufficient.

21

0 200 400 600 800 1000 1200
Sample size

0

5

10

15

20

O
pt

im
al

 c
rw

d

1D tests

0 50 100 150 200 250 300
Mean sample size

0

2

4

6

8

10

12

14

16

O
pt

im
al

 c
rw

d

2D tests

Figure 1: Empirical optimum values for crwd: Each point represents the optimum value
of crwd for a given model with a particular random choice of parameters.

0 20 40 60 80
Smallest entry in pts_l

82.0

81.8

81.6

81.4

81.2

81.0

80.8

Lo
g-

lik
el

ih
oo

d
of

 d
at

a

Sample size = 30

1.0
2.5
4.0
5.5
7.0
8.5
10.0
best

Figure 2: Consistency of optimum crwd value: For a one-dimensional sys-
tem with 30 samples, the likelihood of a particular data set was calculated with
pts_l = [base, base+10, base+20], for varying crwd factors and values of base. In gen-
eral, the optimum value of the crwd parameter does not depend on base.

22

6.2 Likelihoods

∂a∂i offers two complimentary ways of calculating the likelihood of the data FS given a
model FS. The first is the Poisson approach, and the second is the multinomial approach.

In the Poisson approach, the likelihood is the product of Poisson likelihoods for each
entry in the data FS, given an expected value from the model FS. This approach is relevant
if θ0 is an explicit parameter in your demographic function. Then the likelihood ll is
ll = dadi.Inference.ll(model , data)

In the multinomial approach, before calculating the likelihood, ∂a∂i will calculate the op-
timal θ0 for comparing model and data. (It turns out that this is just θ0 =

∑
data/

∑
model.)

Because θ0 is so trivial to estimate given the other parameters in the model, it is most effi-
cient for it not to be an explicit parameter in the demographic function. Then the likelihood
ll is
ll = dadi.Inference.ll_multinomial(model , data)

The optimal θ0 can be requested via
theta0 = dadi.Inference.optimal_sfs_scaling(model , data)

6.3 Fitting

To find the maximum-likelihood model parameters for a given data set, ∂a∂i employs non-
linear optimization. Several optimization methods are provided, as detailed in Section 6.5.

6.3.1 Parameter bounds

In their exploration, the optimization methods typically try a wide range of parameter values.
For the methods that work in terms of log parameters, that range can be very wide indeed.
As a consequence, the algorithms may sometimes try parameter values that are very far
outside the feasible range and that cause very slow evaluation of the model FS. Thus, it is
important to place upper and lower bounds on the values they may try. For divergence times
and migration rates, large values cause slow evaluation, so it is okay to put the lower bound
to 0 as long as the upper bound is kept reasonable. In our analyses, we often set the upper
bound on times to be 10 and the upper bound on migration rates to be 20. For population
sizes, very small sizes lead to very fast drift and consequently slow solution of the model
equations; thus a non-zero lower bound is important, with the upper bound less so. In our
analyses, we often set the lower bound on population sizes to be 10−2 or 10−3 (i.e. 1e-2 or
1e-3).

If your fits often push the bounds of your parameter space (i.e., results are often at the
bounds of one or more parameters), this indicates a problem. It may be that your bounds
are too conservative, so try widening them. It may also be that your model is misspecified
or that there are unaccounted biases in your data.

23

6.4 Fixing parameters

It is often useful to optimize only a subset of model parameters. A common example is doing
likelihood-ratio tests on nested models. The optional argument fixed_params to the opti-
mization methods facilitates this. As an example, if fixed_params=[None,1.0,None,2.0],
the first and third model parameters will be optimized, with the second and fourth param-
eters fixed to 1 and 2 respectively. Note that when using this option, a full length initial
parameter set p0 should be passed in.

6.5 Which optimizer should I use?

∂a∂i provides a multitude of optimization algorithms, each of which performs best in par-
ticular circumstances.

The two most-general purpose routines are the BFGS methods implemented in dadi.Inference.optimize

and dadi.Inference.optimize_log. These perform a local search from a specified set of
parameters, using an algorithm which attempts to estimate the curvature of the likelihood
surface. However, these methods may have convergence problems if the maximum-likelihood
parameters are at one or more of the parameter bounds.

∂a∂i also implements two L-BFGS-B methods, dadi.Inference.optimize_lbfgsb and
dadi.Inference.optimize_log_lbfgsb. These implement a variant of the BFGS method
that deals much more efficiently with bounded parameter spaces. If your optimizations are
often hitting the parameter bounds, try using these methods. Note that it is probably best
to start with the vanilla BFGS methods, because the L-BFGS-B methods will always try
parameter values at the bounds during the search. This can dramatically slow model fitting.

We also provide a simplex (a.k.a. amoeba) method in terms of log parameters, im-
plemented in dadi.Inference.optimize_log_fmin. This method does not use derivative
information, so it may be more robust than the BFGS-based methods, but it is much slower.

Finally, there is a simple grid search, implemented in dadi.Inference.optimize_grid.
Both BFGS and simplex are local search algorithms; thus they are efficient, but not

guaranteed to find the global optimum. Thus, it is important to run several optimizations
for each data set, starting from different initial parameters. If all goes well, multiple such runs
will converge to the same set of parameters and likelihood, and this likelihood will the the
highest found. This is strong evidence that you have indeed found the global optimum. To
facilitate this, ∂a∂i provides a method dadi.Misc.perturb_params that randomly perturbs
the parameters passed in to generate a new initial point for the optimization.

7 Plotting

For your convenience, ∂a∂i provides several plotting methods. These all require installation
of the Python library matplotlib.

24

0 5 10 15 20
102

103

104

0 5 10 15 20
3

2

1

0

1

2

3

Figure 3: 1D model-data comparison plot: In the top panel, the model is plotted in
red and the data in blue. In the bottom panel, the residuals between model and data are
plotted.

7.1 Essential matplotlib commands

To access additional, more general, methods for manipulating plots
import matplotlib.pyplot as pyplot

In particular, the method pyplot.figure() will create a new empty figure.
One quirk of matplotlib is that your plots may not show up immediately upon calling

the plotting commands. If they don’t, a call to pyplot.show() will pop them up. If you
are not running in IPython, this will cause Python to block, so do not place it in scripts you
run from the command-line, unless it is the last line.

7.2 1D comparison

dadi.Plotting.plot_1d_comp_Poisson and dadi.Plotting.plot_1d_comp_multinomial

plot a comparison between a one-dimensional model and data FS. In the _multinomial

method, the model is optimally scaled to match the data. The plot is illustrated in Fig. 3.
The top plot shows the model and data frequency spectra, while the bottom shows the
residuals between model and data. The bottom plot shows the residuals between model and
data; a positive residuals means the model predicts too many SNPs in that entry. For an
explanation of the residuals, see Section 7.7.

25

0 20CEU

0

20

Y
R

I

1

10

100

1000

Figure 4: 2D FS plot: Each entry in the FS is colored according to the logarithm of the
number of variants within it.

7.3 2D spectra

dadi.Plotting.plot_single_2d_sfs will plot a single two-dimensional frequency spec-
trum, as a logarithmic colormap. This is illustrated in Fig. 4, which is the result of
dadi.Plotting.plot_single_2d_sfs(data , vmin =1)

Here vmin indicates the minimum value to plot, because in a logarithmic plot 0 in the FS
maps to minus infinity, which causes great difficulty in plotting. Entires below the minimum
(and masked entries) are plotted as white.

7.4 2D comparison

dadi.Plotting.plot_2d_comp_Poisson and dadi.Plotting.plot_2d_comp_multinomial

plot comparisons between 2D models and data.

7.5 3D spectra

Unfortunately, nice portable 3D plotting is difficult in Python. We have developed a Math-
ematica script that will do such plotting (as in Fig. 2(A) of [3].) Please contact the authors
dadi-user and we will send you a copy.

7.6 3D comparison

dadi.Plotting.plot_3d_comp_Poisson and dadi.Plotting.plot_3d_comp_multinomial

plot comparisons between 3D models and data. The comparison is based on the 3 2D
marginal spectra.

7.7 Residuals

The residuals are the properly normalized differences between model and data. Normaliza-
tion is necessary, because the expected variance in each entry increase with the expected

26

Figure 5: 2D model-data comparison plot: The upper-left panel is the data, and the
upper-right is the model. The lower two panels plot the residuals, and a histogram of the
residuals.

27

0 20CEU
0

20

Y
R

I

0 20CEU
0

20

Y
R

I

0 20CEU
0

20

Y
R

I

5 4 3 2 1 0 1 2 3 4

0 20CHB
0

20

Y
R

I

0 20CHB
0

20

Y
R

I

0 20CHB
0

20

Y
R

I

5 4 3 2 1 0 1 2 3

0 20CHB
0

20

C
E
U

1

10

100

1000

0 20CHB
0

20

C
E
U

0 20CHB
0

20

C
E
U

-4.5

0

4.5

4 3 2 1 0 1 2 3

Figure 6: 3D model-data comparison plot:

28

value of that entry. Two types of residuals are supported, Poisson and Anscombe.
The Poisson residual is simply

residual = (model− data)/
√

model. (1)

Note, however, that this residual is not normally distributed when the expected value (model
entry) is small.

The Anscombe residual is

residual =
3

2

(model
2
3 −model−

1
3/9)− (data

2
3 − data−−1

3 /9)

model
1
6

. (2)

These residuals are more normally distributed than the Poisson residuals when expected
values are small [4].

8 Bootstrapping

Because ∂a∂i’s likelihood function treats all variants as independent, and they are often
not, standard likelihood theory should not be used to estimate parameter uncertainties and
significance levels for hypothesis tests. To do such tests, one can bootstrap. For estimat-
ing parameter uncertainties, one can use a nonparameteric bootstrap, i.e. sampling with
replacement from independent units of your data (genes or chromosomes) to generate new
data sets to fit. For hypothesis tests, the parametric bootstrap is preferred. This involves
using a coalescent simulator (such as ms) to generate simulated data sets. Care must be
taken to simulate the sequencing strategy as closely as possible.

8.1 Interacting with ms

∂a∂i provides several methods to ease interaction with ms . The method Spectrum.from_ms_file

will generate an FS from ms output. The method Misc.ms_command will generate the com-
mand line for ms corresponding to a particular simulation. As an example:
import os

core = "-n 1 -n 2 -ej 0.3 2 1"

command = dadi.Misc.ms_command(theta =1000, ns=(20 ,20), core , 1000,

recomb =0.3)

ms_fs = dadi.Spectrum.from_ms_file(os.popen(command))

Here the os.popen command lets us read the ms output straight from the command, without
writing an intermediate file to disk. If you’d like to actually write the file, you could do
os.system("%s > temp.msout" % command)

ms_fs = dadi.Spectrum.from_ms_file("temp.msout")

29

9 Uncertainty analysis

∂a∂i can also perform uncertainty analysis using the Godambe Information Matrix (GIM),
which is equivalent to the Fisher Information Matrix, but for composite likelihoods. The
function call is
uncert = dadi.Godambe.GIM_uncert(func_ex , grid_pts , all_boot ,

p0 , data , log , multinom , eps ,

return_GIM).

Here func_ex is the model function, grid_pts is the set of grid points used in extrapolation,
all_boot is a list containing bootstrapped data sets, p0 is the best-fit parameters, and data

is the original data. If log = True, then uncertainties will be calculated for the logs of the
parameters; these can be interpreted as relative uncertainties for the parameters themselves.
If multinom = True, it is assumed that θ is not an explicit parameter of the model (this is the
most common case). eps is the relative step size to use when taking numerical derivatives; the
default value is often sufficient. The returned uncert is an array equal in length to p0, where
each entry in uncert is the estimated standard deviation of the parameter it corresponds
to in p0. If multinom = True, there will be one extra entry in uncert, corresponding to θ.
If return_GIM = True, then the return value will be (uncert,GIM), where GIM is the full
Godambe Information Matrix, for use in propagating uncertainties.

Using the GIM is often preferable to directly fitting the bootstrapped datasets, because
such fitting is computationally time consuming. However, the GIM approach approximates
parameter uncertainties as normal, which may not be a good approximation if they are large.
To check this, one can evaluate the GIM uncertainties and compare them with the parameter
values themselves. If the GIM uncertainties are large compared to the parameter values (for
example, if a standard deviation is half the parameter value itself), then fitting the bootstrap
data sets may be necessary to get accurate uncertainty estimates.

Parameter uncertainties for correlated parameters can also be determined using the GIM
with uncertainty propagation techniques. An example of this would be if one wanted to know
the uncertainty in the total time of a demographic model, Ttotal = T1 + T2 that contains
two events occurring at times T1 and T2. If the variance for T1 and T2 are given by σ2

T1
and

σ2
T2

, with a covariance term between the two σT1T2 , then the uncertainty in Ttotal is

σTtotal =
√
σ2
T1

+ σ2
T2

+ 2σT1T2 . (3)

Another example where error propagation is necessary is when determining theta for an
individual population, θA = θ × νA, from the overall theta, θ, and the relative population
size νA. For variance in νA and θ given by σ2

νA
and σ2

θ , respectively, and covariance between
the two σνAθ, the equation for uncertainty in θA is

σθA =
√
θ2σ2

νA
+ νA2σ2

θ + 2νAθσνAθ. (4)

The full GIM can be obtained from the dadi.Godambe.GIM_uncert function by setting
return_GIM=True. Variances and covariances can be taken directly from the inverse of the

30

GIM (obtained by numpy.linalg.inv(GIM), in which diagonal terms represent variance
terms and off-diagonal terms represent covariance terms. For more complex scenarios, see
[5].

The dadi.Godambe.FIM_uncert function calculates uncertainties using the Fisher Infor-
mation Matrix, which is sufficient if your data are unlinked.

10 Likelihood ratio test

Using the Godambe Information Matrix, ∂a∂i can also perform hypothesis testing through
an adjusted likelihood ratio test. The likelihood ratio test allows for comparison between
two nested models, such that the simple model is a special case of the more complex model.
The full likelihood ratio test statistic is equal to D = 2(llc − lls), where llc and lls are the
likelihoods of the complex and simple model, respectively. Model selection is then performed
by comparing this test statistic to a χ2 distribution with degrees of freedom equal to the
difference in number of parameters between the simple and complex model. To perform like-
lihood ratio tests using composite likelihoods, a multiplicative adjustment to the likelihood
ratio test statistic shown above is needed. ∂a∂i can calculate this adjustment, using the
function.
adj = dadi.Godambe.LRT_adjust(func_ex , grid_pts , all_boot , p0,

data , nested_indices , multinom=True , eps)

The parameters have the same meaning as for Godambe.GIM_uncert, where func_ex is the
complex model function and p0 is the best-fit parameters. Results in [6] suggested that
setting p0 equal to the best-fit parameters from either the simple model or complex model
yield similar adjustments, although the data in that paper were simulated under the simple
model. When data was simulated under the complex model, it was found that evaluating
the adjustment at the complex model parameterization was more powerful, yielding a more
liberal adjustment than evaluating at the simple model parameterization. We suggest eval-
uating at the complex model parameterization, although evaluating at the simple model
parameterization as well may offer additional insight and be preferable if you desire a more
conservative estimate of the adjustment. The additional parameter nested_indices is a
list that indicates which positions in the complex model arguments are fixed to create the
simple model. For example, if the complex model parameters are [T, ν1, ν2,m], and the sim-
ple model is no migration (so m = 0), then nested_indices=[3]. (Indices are numbered
starting from zero.) The resulting adjusted D statistics is then Dadj = adj × 2(llc − lls).

In the simplest case of a single parameter on the interior of the complex parameter space,
the null distribution for Dadj is χ2 with 1 degree-of-freedom. If the a single parameter is
on the boundary of the parameter space, the null distribution is 1

2
χ2
0 + 1

2
χ2
1. See [6] for an

example of this. For convenience, ∂a∂i includes a function that computes the p-value given
D.
p = sum_chi2_ppf(D, weights)

Here D is Dadj and weights records the weights in the sum-of-χ2 distribution, beginning with
zero degrees of freedom. For example, the case of a single parameter on the boundary would

31

be weights = (0.5, 0.5). For more complex scenarios, see [7].

11 Triallelic spectra

The triallelic frequency spectrum is the distribution of frequencies of triallelic, instead of
biallelic, SNPs. The triallelic spectrum stores the counts of observed alleles with given
major and minor derived allele frequencies, where the major and minor derived alleles are
those appearing at higher or lower frequency, resp. We use a dadi.Spectrum object for
the triallelic spectrum as well, with entries for infeasible triallelic frequencies masked. The
dadi.Triallele methods can handle selection at one or both derived alleles, and can pro-
duce expected frequency spectra under arbitrary, single-population demography. By folding
a triallelic frequency spectrum, we assume that we do not know which derived allele arose
first.

11.1 Built in models

In dadi.Triallele.demographics.py, you will find three pre-built demographic models:
equilibrium, two_epoch, and three_epoch. The methods take demographic, selection,
and integration parameters as inputs, as well as number of sampled individuals (ns), and
number of grid points to use for integration (pts). For example, the parameters for the
equilibrium model takes parameters [sig1, sig2, theta1, theta2, misid, dt]. The
sig parameters are the selection coefficients for each derived allele, theta are the scaled
mutation rates for each derived allele, misid is the probability of ancestral misidentification,
and dt is the integration time step. For non-equilibrium demographies, those models also
take population sizes nu relative to the ancestral population size, and times T for which the
population is at size nu. An example can be found in the Examples subdirectory.

11.2 Faster triallele with Cython

The Triallele methods are written in Python; however, considerable speed-up can be achieved
by generating some of the code in C. Some methods are written using Cython, and these
can be installed by compiling the Cythonized code when ∂a∂i is built. To build the Cython
extensions, use the flag --cython_triallele when installing ∂a∂i, by running
sudo python setup.py install --cython_triallele.
If for some reason installation fails to build the Cython modules, ∂a∂i can be installed
without the Cythonized Triallele methods, and the Triallele methods will still be functional.

12 DFE Inference

Note: This section of the manual is adaptive from the fit∂a∂i manual written by Bernard
Kim and Kirk Lohmueller. If you use this code, please be sure to cite their paper [8].

32

The code examples shown here are meant to work with the example dataset. For simplic-
ity’s sake, I have generated an example dataset with PReFerSIM [9]. Furthermore, we will
work with a relatively small sample size and simple demographic model so that the examples
can be worked through quickly on a laptop. Lastly, all the example code is provided in the
example.py script as well as in this document.

Another important thing to note: ∂a∂i characterizes genotype fitnesses as: 1, 1 + 2sh,
and 1 + 2s, where 1 + 2sh is the fitness of the heterozygote. Furthermore, the DFEs inferred
are scaled in terms of the ancestral population size: γ = 2NAs. This means that the selection
coefficients must sometimes be rescaled, for instance when using the program SLiM [10].

12.1 Example dataset

The example dataset used in the example script was generated with forward simulations
under the PRF model, with the simulation program PReFerSIM. Additionally, we will assume
we know the true underlying demographic model rather than trying to fit one.

This dataset is summarized with a site frequency spectrum, has sample size 2n = 250
(125 diploids), and is saved in the file sample.sfs file. It was generated with a single
size change demography and an underlying gamma DFE. Specifically, a population of size
N = 10, 000 diploids expands to 20, 000 diploids 1000 generations ago and the gamma DFE
has shape parameter 0.186 and scale parameter 686.7. This is the same gamma DFE that
we inferred from the 1000 Genomes EUR dataset, but the scale parameter has been rescaled
to the ancestral population size of 10,000 diploids. Finally, the amount of diversity in the
sample dataset matches θNS = 4000 = 4NAµLNS.

12.2 Demographic inference

Because the usage of ∂a∂i for demographic inference is extensively documented, it will not
be discussed in detail here. In practice, we find that, as long as the demographic model that
fits the synonymous sites reasonably well also works well for inference of the DFE.

Briefly, we fit a demographic model to synonymous sites, which are assumed to be evolving
in a neutral or nearly neutral manner. We believe this accurately represents the effects of
linked selection and population structure, and condition upon this demographic model to
fit the DFE. However, note the assumption of neutral synonymous variants may not hold
for species with large population sizes, since this will increase the efficacy of selection on
mutations with small fitness effects.

Our sample dataset was generated with a two epoch (single size change) demography.
We will assume we infer a 2-fold population expansion 0.05*2NA generations ago, where NA

is the ancestral population size. Therefore, the parameter vector is: [nu, T].
demog_params = [2, 0.05]

theta_ns = 4000.

Again, we assume that the population scaled nonsynonymous mutation rate, θNS =
4, 000. In practice, we compute the synonymous mutation rate, θS, by using the multinomial
likelihood to fit the demographic model. Because this method only fits the proportional

33

SFS, θS is estimated with the dadi.Inference.optimal sfs scaling method. Then, we
multiply θS by 2.31 to get θNS, θS ∗ 2.31 = θNS. Remember that our sample size is 125
diploids (250 chromosomes).

12.3 Pre-computing of the SFS for many γ

Next, we must generate frequency spectra for a range of gammas. The demographic function
is modified to allow for a single selection coefficient. Here, each selection coefficient is scaled
with the ancestral population size, γ = 2NAs. In other words, if gamma=0, this function is
the same as the original demographic function. This function is defined as two epoch in
dadi.DFE.DemogSelModels.py. Note the use of a Python decorator to easily define this as
an extrapolating function.

return Spectrum.from_phi(phi , ns, (xx ,))

@Numerics.make_extrap_func

def two_epoch(params , ns, pts):

"""

Instantaneous population size change , plus selection.

params: [nu,T,gamma]

ns: Sample sizes

pts: Grid point settings for integration

Note that this function is defined using a decorator with make_extrap_func.

So there is no need to make it extrapolate again.

nu: Final population size

T: Time of size change

"""

nu , T, gamma = params

xx = Numerics.default_grid(pts)

phi = PhiManip.phi_1D(xx, gamma=gamma)

Then, we generate the frequency spectra for a range of gammas. The following code gen-
erates expected frequency spectra, conditional on the demographic model fit to synonymous
sites, over gamma pts log-spaced points over the range of gamma bounds. Additionally, the
mp=True argument tells fit∂a∂i whether it should utilize multiple cores/threads, which is
convenient since this step takes the longest. If the argument cpus is passed, it will utilize
that many cores, but if mp=True and no cpus argument is passed, it will use n-1 threads,
where n is the number of threads available. If mp=False, each SFS will be computed in
serial. This step should take 1-10 minutes depending on your CPU.
#pts_l = [600, 800, 1000]

#spectra = DFE.Cache1D(demog_params , ns, DFE.DemogSelModels.two_epoch , pts_l=pts_l ,

34

gamma_bounds=(1e-5, 500), gamma_pts=300, verbose=True ,

mp=True)

Note, one error message that will come up often with very negative selection coefficients is:

WARNING:Numerics:Extrapolation may have failed. Check resulting frequency spectrum

for unexpected results.

One way to fix this is by increasing the pts l grid sizes – this will need to increase as the
sample size increases and/or if the integration is done over a range which includes stronger se-
lection coefficients. dadi.Numerics.make extrap func is used to extrapolate the frequency
spectra to infinitely many gridpoints, but will sometimes return tiny negative values (often
|Xi| < 1e−50) due to floating point rounding errors. Using dadi.Numerics.make extrap log func

will sometimes return Inf values and is harder to work with. In practice, it seems that the
tiny negative values do not affect the integration because they are insignificant, but if the
error message appears it is good to manually double-check each SFS. Alternately, the small
negative values can be manually approximated with 0.

In the example, the pre-computed SFSs are saved in the list spectra.spectra. For
convenience’s sake, the spectra object can be pickled.
#pickle.dump(spectra , open(’example_spectra.bpkl’,’wb ’))

To load them , use this code

12.4 Fitting a DFE

12.4.1 Fitting simple DFEs

Fitting a DFE is the quickest part of this procedure, especially for simple distributions such
as the gamma distribution. If you wish to get an SFS for a specific DFE, you can use the
integrate method that is built into the spectra object: spectra.integrate(sel params,

None, sel dist, theta, None). sel params is a list containing the DFE parameters,
sel dist is the distribution used for the DFE, and theta is θNS. To compute the expected
SFS for our simulations with the true parameter values, we would use spectra.integrate([0.186,
686.7], None, Selection.gamma dist, 4000., None). (The None arguments are for ns

and pts, which are ignored. These are useful to ensure compatibility with ∂a∂i’s optimization
functions.)

First, load the sample data:
data = dadi.Spectrum.from_file(’example.fs’)

Similar to the way in which vanilla ∂a∂i is used, you should have a starting guess at
the parameters. Set an upper and lower bound. Perturb the parameters to select a random
starting point, then fit the DFE. This should be done multiple times from different starting
points. We use the spectra.integrate methods to generate the expected SFSs during each
step of the optimization. The following lines of code fit a gamma DFE to the example data:
#sel_params = [0.2, 1000.]

#lower_bound , upper_bound = [1e-3, 1e-2], [1, 50000.]

35

#p0 = dadi.Misc.perturb_params(sel_params , lower_bound=lower_bound ,

upper_bound=upper_bound)

#popt = dadi.Inference.optimize_log(p0, data , spectra.integrate , pts=None ,

func_args=[DFE.PDFs.gamma , theta_ns],

lower_bound=lower_bound , upper_bound=upper_bound ,

verbose=len(sel_params), maxiter=30, multinom=False)

If this runs correctly, you should infer something close to, but not exactly, the true DFE.
The final results will be stored in popt. The expected SFS at the MLE can be computed
with:
#model_sfs = spectra.integrate(popt , None , DFE.PDFs.gamma , theta_ns , None)

12.4.2 Fitting complex DFEs

Fitting complex distributions is similar to fitting simple DFEs, but requires a few additional
steps. The following code can be used to fit a neutral+gamma mixture DFE to the data.
Note that the gamma DFE should fit better if assessing model fit using AIC. Additionally,
we assume that every selection coefficient γ < 1e − 4 is effectively neutral. Since this is a
mixture of two distributions, we infer the proportion of neutral mutations, pneu, and assume
the complement of that (i.e. 1 − pneu) is the proportion of new mutations drawn from a
gamma distribution. Therefore, the parameter vector should be: [pneu,shape, scale]. The
gamma DFE is still the true DFE.
#def neugamma(xx, params):

pneu , alpha , beta = params

Convert xx to an array

xx = np.atleast_1d(xx)

out = (1-pneu)*DFE.PDFs.gamma(xx, (alpha , beta))

Assume gamma < 1e-4 is essentially neutral

out[np.logical_and(0 <= xx, xx < 1e-4)] += pneu/1e-4

Reduce xx back to scalar if it’s possible

return np.squeeze(out)

Fit the DFE as before, accounting for the extra parameter to describe the proportion of
neutral new mutations. Note that pneu is explicitly bounded to be 0 < pneu ≤ 1.
#sel_params = [0.2, 0.2, 1000.]

#lower_bound , upper_bound = [1e-3, 1e-3, 1e-2], [1, 1, 50000.]

#p0 = dadi.Misc.perturb_params(sel_params , lower_bound=lower_bound ,

upper_bound=upper_bound)

#popt = dadi.Inference.optimize_log(p0, data , spectra.integrate , pts=None ,

func_args=[neugamma , theta_ns],

lower_bound=lower_bound , upper_bound=upper_bound ,

verbose=len(sel_params),

maxiter=30, multinom=False)

For fitting with ancestral state misidentification or including a point mass of positive
selection, see example1D.py.

36

12.5 Fitting joint DFEs

∂a∂i can also fit joint DFEs between populations, in a similar fashion to one-dimensional
DFEs.

Caching is similar to the one-dimensional case, although note that it is generally much
more computationally expensive.

s2 = Cache2D(demo_params , ns, func_ex , pts=pts_l , gamma_pts =100,

gamma_bounds =(1e-2, 10), verbose=True , mp=True ,

additional_gammas =[1.2, 4.3])

Save spectra2d object

fid = open(’test.spectra2d.bpkl’, ’wb’)

pickle.dump(s, fid , protocol =2)

fid.close ()

∂a∂i currently includes a few simple models for joint DFEs in dadi.DFE.PDFs. Note
that the semi-analytic integration of the distribution over the regime not covered by the
cache is expensive. Therefore, C implementations of the PDFs can make a big difference in
computational time, and we provide C implementations for the default PDFs.

Calculating individual spectra is very similar to the 1D case.
params = [-0.5 ,0.5,0.99 , 0.1, 4.3]

fs_biv = s2.integrate_symmetric_point_pos(params , None , PDFs.biv_lognormal , theta ,

pts=None)

As is optimization.
popt = dadi.Inference.optimize(p0, data ,

s2.integrate_symmetric_point_pos ,

pts=None , func_args =[sel_dist , theta],

Note that mu in principle has no lower or

upper bound , sigma has only a lower bound

of 0, ppos is bounded between 0 and 1, and

gamma pos is bounded from below by 0.

lower_bound =[-1,0.1,-1,0,0],

upper_bound =[1,1,1,1,None],

We fix the gammapos to be 1.2, because

we can’t do this integration effectively

if gammapos is allowed to vary.

fixed_params =[None ,None ,None ,None ,1.2],

verbose =30, multinom=False)

Note that when a point mass of positive selection is included in a 2D DFE, the assumed
value for the positive γ must be cached, otherwise evaluation would be too expensive.

∂a∂i also implements mixture models, in which the total DFE is a sum of a 2D distri-
bution plus a 1D distribution representing perfect correlation. These are implemented by
dadi.DFE.mixture.
target = mixture_symmetric_point_pos(input_params ,None ,s1,s2 ,PDFs.lognormal ,

PDFs.biv_lognormal , theta , None)

37

Using a mixture model requires both a 1D and a 2D cache.
For additional examples, see examples/DFE/example2D.py in the source distribution.

13 Inbreeding

When populations are inbred, the excess homozygosity can distort the SFS such that the
even entries are greater than the odd entries for a population. For high levels of inbreeding
(FIS ≈ 0.5 or higher), this will generate frequency spectra with a conspicuous pattern of
zig-zagging up and down between adjacent entries. However, lower levels of inbreeding can
still bias estimates of demography despite not have such a dramatic effect on the SFS.

Figure 7: SFS with Inbreeding: FIS = 0.8.

To accommodate this, inbreeding can be estimated as part of a demographic model
by using the from_phi_inbreeding function in the Spectrum class. This can be done by
including additional parameters for the inbreeding coefficients (one for each population)
in the model and passing them to the from_phi_inbreeding function in the demographic
model:
def snm_inbreeding(params , ns , pts):

F = params [0]

xx = dadi.Numerics.default_grid(pts)

phi = dadi.PhiManip.phi_1D(xx)

fs = dadi.Spectrum.from_phi_inbreeding(phi , ns, (xx ,),

(F,), (2,))

return fs

Listing 9: Inbreeding: Standard neutral model for a diploid population with inbreeding
level F.

The from_phi_inbreeding function also requires the ploidy levels of the populations
being analyzed, so it can naturally handle autopolyploids as well:

38

def iso_inbreeding(params , ns , pts):

T, nuA , nuB , F1, F2 = params

xx = dadi.Numerics.default_grid(pts)

phi = dadi.PhiManip.phi_1D(xx)

phi = dadi.PhiManip.phi_1D_to_2D(xx, phi)

phi = phi.Integration.two_pops(phi , xx, T, nu1 , nu2)

fs = dadi.Spectrum.from_phi_inbreeding(phi , ns, (xx,xx),

(F1 ,F2), (2,4))

return fs

Listing 10: Diploid-Tetraploid Isolation Model: An ancestral population splits at time
T into a diploid (pop 1) and autotetraploid (pop 2) population of sizes nu1 and nu2, respec-
tively. The populations have separate inbreeding coefficients F1 and F2.

14 Polyploid Subgenomes

To model polyploid lineages, a demographic model for their subgenomes can be created. This
is done by treating the subgenomes as analogous to populations, and then combining their
frequency spectra into a single, polyploid SFS. Including a migration parameter between the
subgenomes can act as a proxy for allelic exchange (homoeologous recombination), which
allows both autopolyploids and allopolyploids to be modeled. The input for a single polyploid
lineage is a one-dimensional SFS, so there is no need to predetermine if the lineage is auto-
or allopolploid. There is also no need to try and separate SNP calls between subgenomes
because fixed heterozygosity is naturally accommodated by this model.

Figure 8: Tetraploid SFS: FIS = 0.8.

def two_subgenomes(params , ns , pts):

T, m = params

xx = dadi.Numerics.default_grid(pts)

39

phi = dadi.PhiManip.phi_1D(xx)

phi = dadi.PhiManip.phi_1D_to_2D(xx, phi)

phi = dadi.Integration.two_pops(phi , xx, T, 1.0, 1.0, m, m)

fs = dadi.Spectrum.from_phi(phi , ns, (xx,xx)

fs2 = dadi.Spectrum(dadi.Misc.combine_pops(fs))

return fs2

Listing 11: Two subgenomes: At time T in the past, an equilibrium population duplicates
(autopolyploidy) and the subgenomes exchange genes symmetrically at a rate of m. The SFS
for the subgenomes are then combined with the combine_pops function to create a single,
polyploid SFS.

15 Installation

15.1 Dependencies

∂a∂i depends on a number of Python libraries. The absolute dependencies are

• Python 3

• NumPy

• SciPy

It is also recommended that you install

• matplotlib

• IPython

The easiest way to obtain all these dependencies is to install the Anacond Python Distri-
bution. The easiest way to install ∂a∂i is to install pip and run python3 -m pip install

dadi. (Although note that this is not guaranteed to be the most up-to-date version.)

15.2 Installing from source

∂a∂i can be easily installed from source code, as long as you have an appropriate C compiler
installed. (On OS X, you’ll need to install the Developer Tools to get gcc.) To do so, first
unpack the source code tarball, unzip dadi-<version>.zip. In the dadi-<version> direc-
tory, run sudo python setup.py install. This will compile the C modules ∂a∂i uses and
install those plus all ∂a∂i Python files in your Python installation’s site-packages directory.
A (growing) series of tests can be run in the tests directory, via python run_tests.py

40

https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/

16 Frequently asked questions

1. What does the message WARNING:Inference:Model is < 0 where data is not masked.

mean?

This warning comes from the likelihood calculation function. It indicates that the
model frequency spectrum has negative values that are trying to be compared with
data. Negative values in the frequency spectrum are nonsense, so this most likely
indicates numerical difficulties. If you’re running an optimization, occasional warnings
like this likely not a problem. The optimization explores a wide range of parameter
values, most of which are bad fits. If these errors crop up for parameter values that
will be a bad fit anyways, the errors won’t change the final result. On the other hand,
if you are re getting these warnings near good-fitting sets of parameters, you’ll need to
fix them. There are two possible causes, and thus two possible solutions.

(a) The negative values might be arising from the extrapolation process (over different
grid sizes). In this case, replace any calls to Numerics.make_extrap_func to
Numerics.make_extrap_log_func. This will do the extrapolation based on the
logarithms of the value in the frequency spectrum, guaranteeing positive results.

(b) The negative values might be arising from calculating an individual spectrum
(for a fixed grid size). This typically only happens in cases of very rapid ex-
ponential growth. In this case, you can try a finer grid size (increase the ele-
ments of the pts_l list) or smaller time steps. The time step is set by the call to
dadi.Integration.set_timescale_factor(pts_l[-1], factor=10). To shorten
the time step, increase factor. First try shortening the time step, as this will
typically increase computation time less than increasing the grid size.

2. I’m projecting my data down to a smaller frequency spectrum. What sample sizes
should I project down to?

At this time, we have not done any formal power testing to judge the optimal level of
projection, but we do have a rule-of-thumb. As you project down to smaller sample
sizes, more SNPs can be used in constructing the FS (because they have enough suc-
cessful calls). However, as you project downward, some SNPs will “disappear” from the
FS because they get partially projected down to 0 observations in all the populations.
Our rule of thumb is to use the projection that maximizes the number of segregating
SNPs. The number of segregating SNPs can be calculated as fs.S().

References

[1] Hernandez RD, Williamson SH, Bustamante CD (2007) Context dependence, ancestral
misidentification, and spurious signatures of natural selection. Mol Biol Evol 24: 1792–
1800.

41

[2] Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population
structure. Evolution 38: 1358–1370.

[3] Gutenkunst RN, Hernandez RD, Williams SH, Bustamante CD (2009) Inferring the
joint demographic history of multiple populations from multidimensional SNP frequency
data. PLoS Genet 5: e1000695.

[4] Pierce DA, Schafer DW (1986) Residuals in generalized linear models. J Am Stat Assoc
81: 977–986.

[5] Ku HH (1966) Notes on the use of propagation of error formulas. J Res Nbs C Eng Inst
70: 263-273.

[6] Coffman AJ, Hsieh P, Gravel S, Gutenkunst RN (2016) Computationally efficient com-
posite likelihood statistics for demographic inference. Mol Biol Evol 33: 591–593.

[7] Self SG, Liang Ky (1987) Asymptotic properties of maximum likelihood estimators and
likelihood ratio tests under nonstandard conditions. J Am Stat Assoc 82: 605–610.

[8] Kim BY, Huber CD, Lohmueller KE (2017) Inference of the distribution of selection
coefficients for new nonsynonymous mutations using large samples. Genetics 206: 345.

[9] Ortega-Del Vecchyo D, Marsden CD, Lohmueller KE (2016) Prefersim: Fast simulation
of demography and selection under the poisson random field model. Bioinformatics :
btw478.

[10] Haller BC, Messer PW (2016) Slim 2: Flexible, interactive forward genetic simulations.
Molecular Biology and Evolution : msw211.

42

	Introduction
	Getting help
	Helping us

	Suggested workflow
	Importing data
	Frequency spectrum file format
	SNP data format
	SNP data methods

	Manipulating spectra
	Summary statistics
	Single-population statistics
	Multi-population statistics

	Folding
	Masking
	Marginalizing
	Projection
	Sampling
	Scrambling

	Specifying a model
	Implementation
	Units
	Fixed
	Ancient sequences

	Simulation and fitting
	Grid sizes and extrapolation
	Grid choice

	Likelihoods
	Fitting
	Parameter bounds

	Fixing parameters
	Which optimizer should I use?

	Plotting
	Essential matplotlib commands
	1D comparison
	2D spectra
	2D comparison
	3D spectra
	3D comparison
	Residuals

	Bootstrapping
	Interacting with ms

	Uncertainty analysis
	Likelihood ratio test
	Triallelic spectra
	Built in models
	Faster triallele with Cython

	DFE Inference
	Example dataset
	Demographic inference
	Pre-computing of the SFS for many
	Fitting a DFE
	Fitting simple DFEs
	Fitting complex DFEs

	Fitting joint DFEs

	Inbreeding
	Polyploid Subgenomes
	Installation
	Dependencies
	Installing from source

	Frequently asked questions

