Actual source code: pepimpl.h

slepc-3.14.1 2020-12-08
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-2020, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */

 11: #if !defined(SLEPCPEPIMPL_H)
 12: #define SLEPCPEPIMPL_H

 14: #include <slepcpep.h>
 15: #include <slepc/private/slepcimpl.h>

 17: SLEPC_EXTERN PetscBool PEPRegisterAllCalled;
 18: SLEPC_EXTERN PetscErrorCode PEPRegisterAll(void);
 19: SLEPC_EXTERN PetscLogEvent PEP_SetUp,PEP_Solve,PEP_Refine;

 21: typedef struct _PEPOps *PEPOps;

 23: struct _PEPOps {
 24:   PetscErrorCode (*solve)(PEP);
 25:   PetscErrorCode (*setup)(PEP);
 26:   PetscErrorCode (*setfromoptions)(PetscOptionItems*,PEP);
 27:   PetscErrorCode (*publishoptions)(PEP);
 28:   PetscErrorCode (*destroy)(PEP);
 29:   PetscErrorCode (*reset)(PEP);
 30:   PetscErrorCode (*view)(PEP,PetscViewer);
 31:   PetscErrorCode (*backtransform)(PEP);
 32:   PetscErrorCode (*computevectors)(PEP);
 33:   PetscErrorCode (*extractvectors)(PEP);
 34:   PetscErrorCode (*setdefaultst)(PEP);
 35: };

 37: /*
 38:      Maximum number of monitors you can run with a single PEP
 39: */
 40: #define MAXPEPMONITORS 5

 42: typedef enum { PEP_STATE_INITIAL,
 43:                PEP_STATE_SETUP,
 44:                PEP_STATE_SOLVED,
 45:                PEP_STATE_EIGENVECTORS } PEPStateType;

 47: /*
 48:    To check for unsupported features at PEPSetUp_XXX()
 49: */
 50: typedef enum { PEP_FEATURE_NONMONOMIAL=1,   /* non-monomial bases */
 51:                PEP_FEATURE_REGION=4,        /* nontrivial region for filtering */
 52:                PEP_FEATURE_EXTRACT=8,       /* eigenvector extraction */
 53:                PEP_FEATURE_CONVERGENCE=16,  /* convergence test selected by user */
 54:                PEP_FEATURE_STOPPING=32      /* stopping test */
 55:              } PEPFeatureType;

 57: /*
 58:    Defines the PEP data structure.
 59: */
 60: struct _p_PEP {
 61:   PETSCHEADER(struct _PEPOps);
 62:   /*------------------------- User parameters ---------------------------*/
 63:   PetscInt       max_it;           /* maximum number of iterations */
 64:   PetscInt       nev;              /* number of eigenvalues to compute */
 65:   PetscInt       ncv;              /* number of basis vectors */
 66:   PetscInt       mpd;              /* maximum dimension of projected problem */
 67:   PetscInt       nini;             /* number of initial vectors (negative means not copied yet) */
 68:   PetscScalar    target;           /* target value */
 69:   PetscReal      tol;              /* tolerance */
 70:   PEPConv        conv;             /* convergence test */
 71:   PEPStop        stop;             /* stopping test */
 72:   PEPWhich       which;            /* which part of the spectrum to be sought */
 73:   PetscReal      inta,intb;        /* interval [a,b] for spectrum slicing */
 74:   PEPBasis       basis;            /* polynomial basis used to represent the problem */
 75:   PEPProblemType problem_type;     /* which kind of problem to be solved */
 76:   PEPScale       scale;            /* scaling strategy to be used */
 77:   PetscReal      sfactor,dsfactor; /* scaling factors */
 78:   PetscInt       sits;             /* number of iterations of the scaling method */
 79:   PetscReal      slambda;          /* norm eigenvalue approximation for scaling */
 80:   PEPRefine      refine;           /* type of refinement to be applied after solve */
 81:   PetscInt       npart;            /* number of partitions of the communicator */
 82:   PetscReal      rtol;             /* tolerance for refinement */
 83:   PetscInt       rits;             /* number of iterations of the refinement method */
 84:   PEPRefineScheme scheme;          /* scheme for solving linear systems within refinement */
 85:   PEPExtract     extract;          /* type of extraction used */
 86:   PetscBool      trackall;         /* whether all the residuals must be computed */

 88:   /*-------------- User-provided functions and contexts -----------------*/
 89:   PetscErrorCode (*converged)(PEP,PetscScalar,PetscScalar,PetscReal,PetscReal*,void*);
 90:   PetscErrorCode (*convergeduser)(PEP,PetscScalar,PetscScalar,PetscReal,PetscReal*,void*);
 91:   PetscErrorCode (*convergeddestroy)(void*);
 92:   PetscErrorCode (*stopping)(PEP,PetscInt,PetscInt,PetscInt,PetscInt,PEPConvergedReason*,void*);
 93:   PetscErrorCode (*stoppinguser)(PEP,PetscInt,PetscInt,PetscInt,PetscInt,PEPConvergedReason*,void*);
 94:   PetscErrorCode (*stoppingdestroy)(void*);
 95:   void           *convergedctx;
 96:   void           *stoppingctx;
 97:   PetscErrorCode (*monitor[MAXPEPMONITORS])(PEP,PetscInt,PetscInt,PetscScalar*,PetscScalar*,PetscReal*,PetscInt,void*);
 98:   PetscErrorCode (*monitordestroy[MAXPEPMONITORS])(void**);
 99:   void           *monitorcontext[MAXPEPMONITORS];
100:   PetscInt        numbermonitors;

102:   /*----------------- Child objects and working data -------------------*/
103:   ST             st;               /* spectral transformation object */
104:   DS             ds;               /* direct solver object */
105:   BV             V;                /* set of basis vectors and computed eigenvectors */
106:   RG             rg;               /* optional region for filtering */
107:   SlepcSC        sc;               /* sorting criterion data */
108:   Mat            *A;               /* coefficient matrices of the polynomial */
109:   PetscInt       nmat;             /* number of matrices */
110:   Vec            Dl,Dr;            /* diagonal matrices for balancing */
111:   Vec            *IS;              /* references to user-provided initial space */
112:   PetscScalar    *eigr,*eigi;      /* real and imaginary parts of eigenvalues */
113:   PetscReal      *errest;          /* error estimates */
114:   PetscInt       *perm;            /* permutation for eigenvalue ordering */
115:   PetscReal      *pbc;             /* coefficients defining the polynomial basis */
116:   PetscScalar    *solvematcoeffs;  /* coefficients to compute the matrix to be inverted */
117:   PetscInt       nwork;            /* number of work vectors */
118:   Vec            *work;            /* work vectors */
119:   KSP            refineksp;        /* ksp used in refinement */
120:   PetscSubcomm   refinesubc;       /* context for sub-communicators */
121:   void           *data;            /* placeholder for solver-specific stuff */

123:   /* ----------------------- Status variables --------------------------*/
124:   PEPStateType   state;            /* initial -> setup -> solved -> eigenvectors */
125:   PetscInt       nconv;            /* number of converged eigenvalues */
126:   PetscInt       its;              /* number of iterations so far computed */
127:   PetscInt       n,nloc;           /* problem dimensions (global, local) */
128:   PetscReal      *nrma;            /* computed matrix norms */
129:   PetscReal      nrml[2];          /* computed matrix norms for the linearization */
130:   PetscBool      sfactor_set;      /* flag to indicate the user gave sfactor */
131:   PetscBool      lineariz;         /* current solver is based on linearization */
132:   PEPConvergedReason reason;
133: };

135: /*
136:     Macros to test valid PEP arguments
137: */
138: #if !defined(PETSC_USE_DEBUG)

140: #define PEPCheckSolved(h,arg) do {} while (0)

142: #else

144: #define PEPCheckSolved(h,arg) \
145:   do { \
146:     if ((h)->state<PEP_STATE_SOLVED) SETERRQ1(PetscObjectComm((PetscObject)(h)),PETSC_ERR_ARG_WRONGSTATE,"Must call PEPSolve() first: Parameter #%d",arg); \
147:   } while (0)

149: #endif

151: /*
152:     Macros to check settings at PEPSetUp()
153: */

155: /* PEPCheckHermitian: the problem is Hermitian or Hyperbolic */
156: #define PEPCheckHermitianCondition(pep,condition,msg) \
157:   do { \
158:     if (condition) { \
159:       if ((pep)->problem_type!=PEP_HERMITIAN && (pep)->problem_type!=PEP_HYPERBOLIC) SETERRQ2(PetscObjectComm((PetscObject)(pep)),PETSC_ERR_SUP,"The solver '%s'%s can only be used for Hermitian (or hyperbolic) problems",((PetscObject)(pep))->type_name,(msg)); \
160:     } \
161:   } while (0)
162: #define PEPCheckHermitian(pep) PEPCheckHermitianCondition(pep,PETSC_TRUE,"")

164: /* PEPCheckQuadratic: the polynomial has degree 2 */
165: #define PEPCheckQuadraticCondition(pep,condition,msg) \
166:   do { \
167:     if (condition) { \
168:       if ((pep)->nmat!=3) SETERRQ2(PetscObjectComm((PetscObject)(pep)),PETSC_ERR_SUP,"The solver '%s'%s is only available for quadratic problems",((PetscObject)(pep))->type_name,(msg)); \
169:     } \
170:   } while (0)
171: #define PEPCheckQuadratic(pep) PEPCheckQuadraticCondition(pep,PETSC_TRUE,"")

173: /* PEPCheckShiftSinvert: shift or shift-and-invert ST */
174: #define PEPCheckShiftSinvertCondition(pep,condition,msg) \
175:   do { \
176:     if (condition) { \
177:       PetscBool __flg; \
178:       PetscObjectTypeCompareAny((PetscObject)(pep)->st,&__flg,STSINVERT,STSHIFT,""); \
179:       if (!__flg) SETERRQ2(PetscObjectComm((PetscObject)(pep)),PETSC_ERR_SUP,"The solver '%s'%s requires shift or shift-and-invert spectral transform",((PetscObject)(pep))->type_name,(msg)); \
180:     } \
181:   } while (0)
182: #define PEPCheckShiftSinvert(pep) PEPCheckShiftSinvertCondition(pep,PETSC_TRUE,"")

184: /* PEPCheckSinvertCayley: shift-and-invert or Cayley ST */
185: #define PEPCheckSinvertCayleyCondition(pep,condition,msg) \
186:   do { \
187:     if (condition) { \
188:       PetscBool __flg; \
189:       PetscObjectTypeCompareAny((PetscObject)(pep)->st,&__flg,STSINVERT,STCAYLEY,""); \
190:       if (!__flg) SETERRQ2(PetscObjectComm((PetscObject)(pep)),PETSC_ERR_SUP,"The solver '%s'%s requires shift-and-invert or Cayley transform",((PetscObject)(pep))->type_name,(msg)); \
191:     } \
192:   } while (0)
193: #define PEPCheckSinvertCayley(pep) PEPCheckSinvertCayleyCondition(pep,PETSC_TRUE,"")

195: /* Check for unsupported features */
196: #define PEPCheckUnsupportedCondition(pep,mask,condition,msg) \
197:   do { \
198:     if (condition) { \
199:       if (((mask) & PEP_FEATURE_NONMONOMIAL) && (pep)->basis!=PEP_BASIS_MONOMIAL) SETERRQ2(PetscObjectComm((PetscObject)(pep)),PETSC_ERR_SUP,"The solver '%s'%s is not implemented for non-monomial bases",((PetscObject)(pep))->type_name,(msg)); \
200:       if ((mask) & PEP_FEATURE_REGION) { \
201:         PetscBool      __istrivial; \
202:         PetscErrorCode __RGIsTrivial((pep)->rg,&__istrivial);CHKERRQ(__ierr); \
203:         if (!__istrivial) SETERRQ2(PetscObjectComm((PetscObject)(pep)),PETSC_ERR_SUP,"The solver '%s'%s does not support region filtering",((PetscObject)(pep))->type_name,(msg)); \
204:       } \
205:       if (((mask) & PEP_FEATURE_EXTRACT) && (pep)->extract && (pep)->extract!=PEP_EXTRACT_NONE) SETERRQ2(PetscObjectComm((PetscObject)(pep)),PETSC_ERR_SUP,"The solver '%s'%s does not support extraction variants",((PetscObject)(pep))->type_name,(msg)); \
206:       if (((mask) & PEP_FEATURE_CONVERGENCE) && (pep)->converged!=PEPConvergedRelative) SETERRQ2(PetscObjectComm((PetscObject)(pep)),PETSC_ERR_SUP,"The solver '%s'%s only supports the default convergence test",((PetscObject)(pep))->type_name,(msg)); \
207:       if (((mask) & PEP_FEATURE_STOPPING) && (pep)->stopping!=PEPStoppingBasic) SETERRQ2(PetscObjectComm((PetscObject)(pep)),PETSC_ERR_SUP,"The solver '%s'%s only supports the default stopping test",((PetscObject)(pep))->type_name,(msg)); \
208:     } \
209:   } while (0)
210: #define PEPCheckUnsupported(pep,mask) PEPCheckUnsupportedCondition(pep,mask,PETSC_TRUE,"")

212: /* Check for ignored features */
213: #define PEPCheckIgnoredCondition(pep,mask,condition,msg) \
214:   do { \
215:     PetscErrorCode __ierr; \
216:     if (condition) { \
217:       if (((mask) & PEP_FEATURE_NONMONOMIAL) && (pep)->basis!=PEP_BASIS_MONOMIAL) { __PetscInfo2((pep),"The solver '%s'%s ignores the basis settings\n",((PetscObject)(pep))->type_name,(msg)); } \
218:       if ((mask) & PEP_FEATURE_REGION) { \
219:         PetscBool __istrivial; \
220:         __RGIsTrivial((pep)->rg,&__istrivial);CHKERRQ(__ierr); \
221:         if (!__istrivial) { __PetscInfo2((pep),"The solver '%s'%s ignores the specified region\n",((PetscObject)(pep))->type_name,(msg)); } \
222:       } \
223:       if (((mask) & PEP_FEATURE_EXTRACT) && (pep)->extract && (pep)->extract!=PEP_EXTRACT_NONE) { __PetscInfo2((pep),"The solver '%s'%s ignores the extract settings\n",((PetscObject)(pep))->type_name,(msg)); } \
224:       if (((mask) & PEP_FEATURE_CONVERGENCE) && (pep)->converged!=PEPConvergedRelative) { __PetscInfo2((pep),"The solver '%s'%s ignores the convergence test settings\n",((PetscObject)(pep))->type_name,(msg)); } \
225:       if (((mask) & PEP_FEATURE_STOPPING) && (pep)->stopping!=PEPStoppingBasic) { __PetscInfo2((pep),"The solver '%s'%s ignores the stopping test settings\n",((PetscObject)(pep))->type_name,(msg)); } \
226:     } \
227:   } while (0)
228: #define PEPCheckIgnored(pep,mask) PEPCheckIgnoredCondition(pep,mask,PETSC_TRUE,"")


231: SLEPC_INTERN PetscErrorCode PEPSetWhichEigenpairs_Default(PEP);
232: SLEPC_INTERN PetscErrorCode PEPSetDimensions_Default(PEP,PetscInt,PetscInt*,PetscInt*);
233: SLEPC_INTERN PetscErrorCode PEPExtractVectors(PEP);
234: SLEPC_INTERN PetscErrorCode PEPBackTransform_Default(PEP);
235: SLEPC_INTERN PetscErrorCode PEPComputeVectors(PEP);
236: SLEPC_INTERN PetscErrorCode PEPComputeVectors_Default(PEP);
237: SLEPC_INTERN PetscErrorCode PEPComputeVectors_Indefinite(PEP);
238: SLEPC_INTERN PetscErrorCode PEPComputeResidualNorm_Private(PEP,PetscScalar,PetscScalar,Vec,Vec,Vec*,PetscReal*);
239: SLEPC_INTERN PetscErrorCode PEPKrylovConvergence(PEP,PetscBool,PetscInt,PetscInt,PetscReal,PetscInt*);
240: SLEPC_INTERN PetscErrorCode PEPComputeScaleFactor(PEP);
241: SLEPC_INTERN PetscErrorCode PEPBuildDiagonalScaling(PEP);
242: SLEPC_INTERN PetscErrorCode PEPBasisCoefficients(PEP,PetscReal*);
243: SLEPC_INTERN PetscErrorCode PEPEvaluateBasis(PEP,PetscScalar,PetscScalar,PetscScalar*,PetscScalar*);
244: SLEPC_INTERN PetscErrorCode PEPEvaluateBasisDerivative(PEP,PetscScalar,PetscScalar,PetscScalar*,PetscScalar*);
245: SLEPC_INTERN PetscErrorCode PEPEvaluateBasisMat(PEP,PetscInt,PetscScalar*,PetscInt,PetscInt,PetscScalar*,PetscInt,PetscScalar*,PetscInt,PetscScalar*,PetscInt);
246: SLEPC_INTERN PetscErrorCode PEPNewtonRefinement_TOAR(PEP,PetscScalar,PetscInt*,PetscReal*,PetscInt,PetscScalar*,PetscInt);
247: SLEPC_INTERN PetscErrorCode PEPNewtonRefinementSimple(PEP,PetscInt*,PetscReal,PetscInt);
248: SLEPC_INTERN PetscErrorCode PEPSetDefaultST(PEP);
249: SLEPC_INTERN PetscErrorCode PEPSetDefaultST_Transform(PEP);

251: #endif