In [1]:
import pydeck as pdk
import pandas as pd

Plotting lights at night

NASA has collected global light emission data for over 30 years. The data set is a deeply fascinating one and has been used for news stories on the Syrian Civil War [1], North Korea [2], and economic growth [3].

In this notebook, we'll use a deck.gl HeatmapLayer to visualize some of the changes at different points in time.

Getting the data

The data for Chengdu, China, is cleaned and available below. Please note this data is meant for demonstration only.

In [2]:
LIGHTS_URL = 'https://raw.githubusercontent.com/ajduberstein/lights_at_night/master/chengdu_lights_at_night.csv'
df = pd.read_csv(LIGHTS_URL)
df.head()
Out[2]:
year lng lat brightness
0 1993 104.575 31.808 4
1 1993 104.583 31.808 4
2 1993 104.592 31.808 4
3 1993 104.600 31.808 4
4 1993 104.675 31.808 4

Setting the colors

pydeck does need to know the color for this data in advance of plotting it

In [3]:
df['color'] = df['brightness'].apply(lambda val: [255, val * 4,  255, 255])
df.sample(10)
Out[3]:
year lng lat brightness color
135739 2003 103.550 30.408 4 [255, 16, 255, 255]
207358 2007 103.475 30.225 5 [255, 20, 255, 255]
138754 2003 103.858 30.200 14 [255, 56, 255, 255]
204568 2007 105.458 30.383 12 [255, 48, 255, 255]
274077 2005 104.583 30.775 3 [255, 12, 255, 255]
180199 2013 103.617 29.517 21 [255, 84, 255, 255]
168912 2013 105.600 30.408 8 [255, 32, 255, 255]
225630 2011 104.967 31.192 6 [255, 24, 255, 255]
203057 2007 103.375 30.450 3 [255, 12, 255, 255]
167421 2013 104.275 30.483 7 [255, 28, 255, 255]

Plotting and interacting

We can plot this data set of light brightness by year, configuring a slider to filter the data as below:

In [4]:
plottable = df[df['year'] == 1993].to_dict(orient='records')

view_state = pdk.ViewState(
    latitude=31.0,
    longitude=104.5,
    zoom=8)
scatterplot = pdk.Layer(
    'HeatmapLayer',
    data=plottable,
    get_position=['lng', 'lat'],
    get_weight='brightness',
    opacity=0.5,
    pickable=False,
    get_radius=800)
r = pdk.Deck(
    layers=[scatterplot],
    initial_view_state=view_state,
    views=[pdk.View(type='MapView', controller=None)])
r.show()
In [5]:
import ipywidgets as widgets
from IPython.display import display
slider = widgets.IntSlider(1992, min=1993, max=2013, step=2)
def on_change(v):
    results = df[df['year'] == slider.value].to_dict(orient='records')
    scatterplot.data = results
    r.update()
    
slider.observe(on_change, names='value')
display(slider)