
MPPL to Fortran 90
Lee Taylor

March 15, 2002

UCRL-PRES-149697



MPPL to f90, UCRL-PRES-149697 slide 2

Motivation

'I don't know what the language of the year 2000 will look like, but it will
be called Fortran.' C.A.R. Hoare.

• Make the code you edit the same as the code you compile and
debug. (line numbers match)

• Have compiler check as much as possible.

• Use the full features of f90.

• Prepare for Fortran 2000 (FMMV)

• Remove dependence on CRAY (integer) pointers

• Easier to import "foreign" packages.

• Easier to export "native" packages.

• Lower "buy in" for potential users.

• Reduce maintenance of MPPL.



MPPL to f90, UCRL-PRES-149697 slide 3

New MPPL Flags

Several new flags have been added to access new functionality. The
default behavior is still the same.

• --langf77 : convert language macros to f77 (default)

• --langf90 : convert language macros to f90

• --nolang : Do not convert language macros

• --isf90 : do not convert any language macros but still pretty print

• --pretty : Indent nicely (default)

• --nopretty : Do not change any indention

• --nonumeric : Leaves type declarations and constants alone. Does
not read mppl.std.



MPPL to f90, UCRL-PRES-149697 slide 4

More New MPPL Flags

• --continuation-indention (-ci) default is 3

• --comment-indention (-comi) default is 40

• --linelength : same as -l

• --relationalf77 : generate f77 relationals (default)

• --relationalf90 : generate new "C" style relationals

• --honor-newlines : preserve existing line break (assumed by
--nopretty)



MPPL to f90, UCRL-PRES-149697 slide 5

Process

New variable in config and Package file: MPPL_lang

• to f77 :Current default. Converts .m to .f

• to f90 : Converts .m to .f90. Uses --langf90. Sets compiler to use
free form input.

• is f90 : Still does other macro and numeric processing.

Set in config file, can be overridden in Package file.



MPPL to f90, UCRL-PRES-149697 slide 6

Process continued

• Set 'MPPL_lang = to f90' in config file. Now all generated files are
.f90 Nothing in repository is changed, only generated files.

• Convert a package at a time using mppl --langf90 --nomacro
--nonumeric --nopretty -l78

• Set Package 'MPPL_lang = is f90'

• Finish a package at a time.

• Set 'MPPL_lang = is f90' in config file. Remove from Package files.



MPPL to f90, UCRL-PRES-149697 slide 7

Process questions

• Use .f or .f90 suffix?

• When .f files in repository are converted to free form, change to .f90
suffix?

• Order of package conversion?

• Speed of conversion?



MPPL to f90, UCRL-PRES-149697 slide 8

Source Form

MPPL

• ; is a logical newline

• # and ! begin comments

• Automatic continuation if line ends in +, -, *, comma, (, &, |, ~, =, >,
<

• White space is significant
Fortran 90 - free form input

• ; is a logical newline

• ! begin comments - C in column 1 is only in fixed format

• continuation - trailing ampersand, plus (in a few cases) leading
ampersand on next line is required.

• White space is significant



MPPL to f90, UCRL-PRES-149697 slide 9

Comments

• Input
      a = 1.     # initialize

• mppl --langf77
c initialize
      a = 1.

• mppl --langf90 --nopretty
      a = 1.     ! initialize

• mppl --langf90
      a = 1.                           ! initialize

• mppl --langf90 -comi25
      a = 1.            ! initialize



MPPL to f90, UCRL-PRES-149697 slide 10

Continuations

Usual continuation
      a = foo + bar + blat + &
          baz

An ampersand must be used on the continuing line if a keyword or
character string is split between lines.

      a = "The quick brown fox &
          &jumped over the lazy dogs back"

Clearer?
      a = "The quick brown fox " // &
          "jumped over the lazy dogs back"

A statement may not have more than 40 lines.



MPPL to f90, UCRL-PRES-149697 slide 11

Include

MPPL include. The file is passed thru MPPL for futher macro processing
and the result is inserted into the output file.

      include file

Fortran 90 include. MPPL never sees the contents of the file.

      include "file"



MPPL to f90, UCRL-PRES-149697 slide 12

End subroutine

Fortran 90 allows additional syntax on end statements.

      subroutine foo

      end subroutine foo

MPPL --langf90 generates this style end statement.



MPPL to f90, UCRL-PRES-149697 slide 13

Logical operators

Fortran 90 supports "C" style relational operators
MPPL  F90  F77
>  >  .gt.
>=  >=  .ge.
<  <  .lt.
<=  <=  .le.
<> ~=  /=  .ne.
= ==  ==  .eq.
& .and.
| .or.
~ .not.

Gotcha, not equal is /=, not !=
!= is a comment
Conversion will use F77 operators



MPPL to f90, UCRL-PRES-149697 slide 14

If statements

No more magical continuations

• Input
      if (foo < 0)
          foo = 0.0

• mppl
      if (foo .lt. 0) foo = 0.0

• mppl -hnl
      if (foo .lt. 0)
     &    foo = 0.0

• mppl -hnl --langf90
      if (foo .lt. 0) &
          foo = 0.0



MPPL to f90, UCRL-PRES-149697 slide 15

Do Loop

• Input
      do i=1,10
         j = j + 1
      enddo

• mppl --langf77
      do 23000 i=1,10
         j = j + 1
23000 continue

• mppl --langf90
      do i=1,10
         j = j + 1
      enddo



MPPL to f90, UCRL-PRES-149697 slide 16

Until Loops

• Input
      do
         i = i + 1
      until (i==10) 

• mppl --langf77
23000 continue
         i = i + 1
c until(i==10)
      if ( .not. (i.eq.10) )go to 23000

• mppl --langf90
      do
         i = i + 1
         if (i.eq.10)exit
      enddo



MPPL to f90, UCRL-PRES-149697 slide 17

While Loops

• Input
      while (j < 10)
         j = j + 1
      enddo

• mppl --langf77
c while(j < 10)
23000 if (j .lt. 10) then
         j = j + 1
         go to 23000
      endif
c endwhile

• mppl --langf90
      do while (j .lt. 10)
         j = j + 1
      enddo



MPPL to f90, UCRL-PRES-149697 slide 18

For Loops

• Input
      for (i=0,i<10,i=i+1) 
         print *, "hi"
      endfor

• mppl --langf77
c -- for([i=0,i<10,i=i+1])
      i=0
      go to 23000
23001 continue
         i=i+1
23000    if (.not.(i.lt.10)) go to 23002
         print *, "hi"
c -- repeat
      go to 23001
23002 continue
c endfor



MPPL to f90, UCRL-PRES-149697 slide 19

For Loops continued

• Input
      for (i=0,i<10,i=i+1) 
         print *, "hi"
      endfor

• mppl --langf90
      i=0
      do while (i.lt.10)
         print *, "hi"
         i=i+1
      enddo



MPPL to f90, UCRL-PRES-149697 slide 20

Break and Next

• Input
      do
         print *, "hi"
         break
         next
      enddo

• mppl --langf77
23000 continue
         print *, "hi"
         go to 23001
         go to 23000
c -- repeat
      go to 23000
23001 continue

• mppl --langf90
      do
         print *, "hi"
         exit
         cycle
      enddo



MPPL to f90, UCRL-PRES-149697 slide 21

Nested Next and Break

• Input
      do
         do
            print *, "hi"
            break 2
            next 2
         enddo
      enddo

• mppl --langf77
23000 continue
23002    continue
            print *, "hi"
            go to 23001
            go to 23000
c -- repeat
         go to 23002
c -- repeat
      go to 23000
23001 continue



MPPL to f90, UCRL-PRES-149697 slide 22

Nested Next and Break continued

• mppl --langf90
      do
         do
            print *, "hi"
            go to 23001
            go to 23000
         enddo
23000    continue
      enddo
23001 continue

• "correct" way
outer: do
         do
            print *, "hi"
            exit outer
            cycle outer
         enddo
      enddo outer



MPPL to f90, UCRL-PRES-149697 slide 23

Select

• Input
      select(icase)
      case 100, 101, 102, 103, 104, 105, 106:
         call other100
      default: call warn
      endselect

• Input
      select(icase)
      case 1: call foo1
      case 4,7-10: call other
      case 100:
         call other100
      default: call warn
      endselect



MPPL to f90, UCRL-PRES-149697 slide 24

Select

• mppl --langf77
c select
      i23000= icase
         go to 23000
23002 continue

         call other100
23003    go to 23001
c -- case (default)
23004 continue
         call warn
c -- dispatch area for select
23005 go to 23001
23000 continue
      i23000=i23000-99
      if (i23000.lt. 1 .or. i23000.gt.7) go to 23004
      go to (23002,23002,23002,23002,23002,23002,23002), i23000
23001 continue
c endselect



MPPL to f90, UCRL-PRES-149697 slide 25

Select

• mppl --langf77
      i23000= icase
         go to 23000
23002 continue
         call foo1
23003    go to 23001
23004 continue
         call other
23005    go to 23001
23006 continue
         call other100
23007    go to 23001
23008 continue
         call warn
23009 go to 23001
23000 continue
      if ( i23000 .eq. 1) go to 23002
      if ( i23000 .eq. 4) go to 23004
      if ( i23000 .ge. 7 .and. i23000 .le. 10) go to 23004
      if ( i23000 .eq. 100) go to 23006
      go to 23008
23001 continue



MPPL to f90, UCRL-PRES-149697 slide 26

Select

• Input
      select(icase)
      case 100, 101, 102, 103, 104, 105, 106:
         call other100
      default: call warn
      endselect

• mppl --langf90
      select case (icase)
      case (100,101,102,103,104,105,106)
         call other100
      case default
         call warn
      end select



MPPL to f90, UCRL-PRES-149697 slide 27

Select

• Input
      select(icase)
      case 1: call foo1
      case 4,7-10: call other
      case 100:
         call other100
      default: call warn
      endselect

• mppl --langf90
      select case (icase)
      case (1)
         call foo1
      case (4,7:10)
         call other
      case (100)
         call other100
      case default
         call warn
      end select



MPPL to f90, UCRL-PRES-149697 slide 28

Select

Integer, logical and character variables are allowed in f90 case statements

• character
select case (style)
  case default
    call solid(x1,y1,x2,y2)
  case ("DOTS")
    call dots(x1,y1,x2,y2)
  case ("DASHES")
    call dashes(x1,y1,x2,y2)
end select

• logical
limit: select case (x > x_max)
   case (.true.)
     y = x * 0.9
   case (.false.)
     y = 1.0 / x
   end select limit



MPPL to f90, UCRL-PRES-149697 slide 29

Return

Return assignment must be explicit

• Input
      function foo(arg)
      return(arg+1)
      end

• mppl
      function foo(arg)
      foo = arg+1
      return
      end

• f90 result clause
      function foo(arg) result (bar)
      bar = arg+1
      return
      end



MPPL to f90, UCRL-PRES-149697 slide 30

F90 Obsolete Features
• Arithmetic IF

• Assigned GOTO, assigned format

• Alternate RETURN

• PAUSE statement

• H edit descriptor



MPPL to f90, UCRL-PRES-149697 slide 31

F90 Deprecated Features
• EQUIVALENCE statement

• COMMON statement

• BLOCK DATA statement

• ENTRY statement

• Fixed Form

• Double precision - Use Real([KIND=]kind)

• Computed GO TO

• Character length specification *len - Use
CHARACTER([LEN=]len)

• Statement Functions



Next Phase
things to think about



MPPL to f90, UCRL-PRES-149697 slide 33

F90 numeric model

• F90's syntax is the same as MPPL's.

• At least two approximation methods, one for default real and one for
double precision real type, must be available.

• A processor may provide additional representation methods that
may be declared using an explicit kind parameter.

• The values of the kind parameter are processor dependent. Basis
uses the symbolic names Size2, Size4, Size8, and Size16.

• There are as many complex kinds are there are real kinds. (double
complex is now standard)

• real*8 is not part of standard.



MPPL to f90, UCRL-PRES-149697 slide 34

MPPL numeric processing
• Input
      real foo1
      real(Size4) foo2
      real(Size8) foo3
      foo1 = 1.0
      foo2 = 1.0_Size4
      foo3 = 1.0_Size8

• mppl -r4
      real foo1
      real foo2
      doubleprecision foo3
      foo1 = 1.0
      foo2 = 1.0
      foo3 = 1.0d0

• mppl -r8
      doubleprecision foo1
      real foo2
      doubleprecision foo3
      foo1 = 1.0d0
      foo2 = 1.0
      foo3 = 1.0d0



MPPL to f90, UCRL-PRES-149697 slide 35

MPPL numeric processing

• Input
      real foo1
      real(Size4) foo2
      real(Size8) foo3
      foo1 = 1.0
      foo2 = 1.0_Size4
      foo3 = 1.0_Size8

• Proposed
      real(RealD) foo1
      real(Real4) foo2
      real(Real8) foo3
      foo1 = 1.0_RealD
      foo2 = 1.0_Real4
      foo3 = 1.0_Real8

• This assumes a generated file that is used by all routines.
      integer, parameter :: Real4 = 4
      integer, parameter :: Real8 = 8
      integer, parameter :: RealD = Real4 or Real8

• default size is set based on -r4 or -r8 flag on a per package basis.



MPPL to f90, UCRL-PRES-149697 slide 36

Address

• Input
      Address fwa

• mppl on sun
      integer fwa

• mppl on alpha
      integer*8 fwa

• Proposed
      integer(SizeA) fwa

Where the value of SizeA is generated to be the integer kind the same
size as an address.

      integer, parameter :: Integer4 = 4
      integer, parameter :: Integer8 = 8
      integer, parameter :: SizeA = Integer4 or Integer8



MPPL to f90, UCRL-PRES-149697 slide 37

Character macros

• Input
      Filename foo
      Varname bar

• mppl
      character*(256) foo
      character*(129) bar

• Proposed
      character(len=FILENAMESIZE) foo
      character(len=VARNAMESIZE) bar



MPPL to f90, UCRL-PRES-149697 slide 38

Numeric Summary

• Use types in the f90 standard way (non-deprecated)

• Single source for all architectures is possible

• SizeX cannot be used for integer and real since they are different
kinds (Real4 and Integer4 instead of just Size4)

• This only affects the generated code (for now).



MPPL to f90, UCRL-PRES-149697 slide 39

MPPL and Mac

Mac generates lots of MPPL macros.
Typical VDF file

xxx
define MAXSIZE 10.0
*** Stuff :
bar real

Generates macxxx (a.k.a. .d) file
define MAXSIZE 10.0
define([UseStuff],[Remark([ Group Stuff])\
      double precision bar
      common /xxx03/ bar
Remark([ End of Stuff])\
])



MPPL to f90, UCRL-PRES-149697 slide 40

MPPL and Mac

Generated macxxx
define MAXSIZE 10.0
define([UseStuff],[Remark([ Group Stuff])\
      double precision bar
      common /xxx03/ bar
Remark([ End of Stuff])\
])

MPPL source
      subroutine init
UseStuff
      bar = MAXSIZE
      end

MPPL macxxx init.m
      subroutine init
c Group Stuff
      double precision bar
      common /xxx03/ bar
c End of Stuff

      bar = 10.0
      end



MPPL to f90, UCRL-PRES-149697 slide 41

MPPL and Mac

Typical VDF file
xxx
define MAXSIZE 10.0
*** Stuff :
bar real

Proposed

• One file per package

• One file per group
xxx.inc

      include "kinds.inc"
      real(RealD), parameter :: MAXSIZE = 10.0

stuff.inc
! Group Stuff
      integer, real(RealD) :: bar
      common /xxx03/ bar
! End of Stuff



MPPL to f90, UCRL-PRES-149697 slide 42

MPPL and Mac

Create a directory structure under include to hold generated include files.
dev/ARCH/include
                xxx
                   xxx.inc
                   stuff.inc

• Avoids large number of files at include level

• Controls name space better to avoid conflicting names



MPPL to f90, UCRL-PRES-149697 slide 43

MPPL and Mac

Convert Use macros to include statements.
MPPL source

      subroutine init
UseStuff
      bar = MAXSIZE
      end

converted source
      subroutine init
      include "xxx.inc"
      include "stuff.inc"

      bar = MAXSIXE
      end

Uses f90 include, not MPPL include so include files will not be processed
by MPPL.



MPPL to f90, UCRL-PRES-149697 slide 44

MAC issues

MPPL is case sensitive, F90 is not.
      maxsize = MAXSIZE

Embedded macros in VDF file
xxx
define MAXSIZE 10.0
*** Stuff :
%define MINSIZE 0.0
bar real

Generates
define MAXSIZE 10.0
define([UseStuff],[Remark([ Group Stuff])\
define MINSIZE 0.0
      double precision bar
      common /xxx03/ bar
Remark([ End of Stuff])\
])



MPPL to f90, UCRL-PRES-149697 slide 45

Mac and Modules

Another option is to generate a file with a module for each group.
Typical VDF file, note language attribute

xxx
define MAXSIZE 10.0
*** Stuff language "F90":
bar real

xxx_mod.f90
      module xxx_mod
      include "kinds.inc"
      real(RealD), parameter :: MAXSIZE = 10.0
      end module xxx_mod

      module stuff_mod
! Group Stuff
      integer, real(RealD) :: bar
      end module stuff_mod

Notice, no common block.



MPPL to f90, UCRL-PRES-149697 slide 46

Mac and Modules

MPPL source
      subroutine init
UseStuff
      bar = MAXSIZE
      end

Converted
      subroutine init
      use xxx_mod
      use stuff_mod

      bar = MAXSIXE
      end



MPPL to f90, UCRL-PRES-149697 slide 47

Mac and Modules issues

• One source file but still compiles to one .mod (or .M) file per
module. Still need a package directory level.

• Introduce more dependencies since module must be compiled before
it can be USEd.

• Totalview has some issues with module variable. Sometimes will
not "dive" on them.

• Using language attribute, possible to use only where wanted.



MPPL to f90, UCRL-PRES-149697 slide 48

Internal functions

      subroutine foo
         a = 1
         b1 = bar(2.0)
         b2 = bar(3.0)
      contains
         function bar(b)
            bar = a + b
         end subroutine bar
       end subroutine foo

• An internal procedure definition cannot have an internal procedure
part.

• The default type mapping in an internal procedure is the type
mapping of the host.

• Replaces statement functions



MPPL to f90, UCRL-PRES-149697 slide 49

Internal functions and macros

• Using a macro
define(setup,[
      a = $1 + $2
])

      subroutine foo
          real a
          setup(1,2)
      end subroutine foo

• Using an internal procedure
      subroutine worker
          real a
          setup(1,2)
      contains
          subroutine setup(x,y)
            a = x + y
          end subroutine setup
      end subroutine worker

Variable 'a' in setup is same as variable 'a' in worker.



MPPL to f90, UCRL-PRES-149697 slide 50

Future

Most files will not require MPPL at all. Some conditional compilation or
macro processing may still be needed to overcome compiler or site
features.
Once the code is f90 we can use third-party tools to help with other
conversions.

• Implicit none

• Array syntax

• Explicit Interfaces

• Modules

• F90 pointers



MPPL to f90, UCRL-PRES-149697 slide 51

Tools - Fortranlint

Cleanscape FortranLint is a Fortran static source code analysis tool that
reduces your organizational exposure to risks from latent software
problems by automatically identifying problems at their source -- in the
Fortran code prior to compiling or executing programs. From its first use,
this venerable Fortran source code analysis tool can save you hundreds of
hours in Fortran code debugging, greatly reducing resources required for
Fortran testing efforts.
http://www.cleanscape.net/products/fortranlint



MPPL to f90, UCRL-PRES-149697 slide 52

Tools - VAST/77to90

With VAST/77to90 you can easily update all your existing Fortran 77
programs to clean and efficient Fortran 90. This is much more than a
source form reformatter. For example, VAST/77to90's sophisticated
Fortran 90 capability provides automatic generation of multi-dimensional
array syntax.

• Removal of obsolete features

• Elimination or reduction of GOTOs and labels

• Generation of array syntax in place of loops.

• Creation of MODULEs from COMMONs

• Automatic generation of interface blocks.

• Fortran "lint" diagnostics
http://www.psrv.com/vast77to90.html



MPPL to f90, UCRL-PRES-149697 slide 53

Tools - simulog

Automatically convert Fortran 77 code to Fortran 90 Use the restructuring
tool to convert old code to the new syntax:

• spaghetti code converted to structured constructs.

• new declaration syntax, all variables declared

• common blocks converted to modules

• automatic interface block generation. Even F77 proprietary
extensions can migrate, such as Cray-style pointers converted to F90
pointers.

Use FORESYS on mixed style F90/F77 applications If you decide to
keep some parts of your application coded in F77, FORESYS can still be
used to ensure top quality with the analysis tool.
http://www.simulog.fr/is/fore3.htm



MPPL to f90, UCRL-PRES-149697 slide 54

Tools - plusFort

plusFORT Version 6 is unique among QA tools in offering three distinct
and complementary approaches to the problem of software quality
assurance. Working together these three approaches have far more impact
than any one could by itself.

• Static Analysis - views data usage from a global perspective, and
detects errors and anomalies that compilers and other tools miss.

• Dynamic Analysis - Calls to probe routines are inserted in the source
code before any operation which depends on the value of a data
item, and the program is compiled and linked in the normal way

• Test Coverage and Hot-Spot Analysis - places probes into Fortran
source code which allow users to monitor the effectiveness of
testing.

http://www.polyhedron.com/pf/pfqa.html



MPPL to f90, UCRL-PRES-149697 slide 55

Notice
This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States

Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use
would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government
or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising or product endorsement purposes.
This work was performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National

Laboratory under Contract No. W-7405-Eng-48.



MPPL to f90, UCRL-PRES-149697 slide 56

Notice continued
This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information

 P.O. Box 62, Oak Ridge, TN 37831
 Prices available from (423) 576-8401
 http://apollo.osti.gov/bridge/

Available to the public from the National Technical Information Service

  U.S. Department of Commerce
  5285 Port Royal Rd.,
  Springfield, VA 22161
  http://www.ntis.gov/
  
  OR
  
  Lawrence Livermore National Laboratory
  Technical Information Department's Digital Library
  http://www.llnl.gov/tid/Library.html


	Cover
	Motivation
	New Flags
	New Flags2

	Process
	Process2
	Process3

	SourceForm
	Comments
	Continuations
	Include
	end subroutine
	Logical operators
	If
	Do Loops
	Until Loops
	While Loops
	For Loops
	For Loops2
	Break and Next
	Nested Next and Break
	Nested Next and Break
	Select
	Select2
	Select3
	Select4
	Select5
	Select6
	Return

	Obsolete
	Deprecated Features
	Next Phase
	Numeric processing
	Numeric2
	Numeric3
	Address
	Character
	Numeric-summary

	Mac
	Mac2
	Mac3
	Mac4
	Mac5
	Mac6
	Mac7
	Mac8
	Mac6

	Internal functions
	Internal2


	Future
	Tools1
	Tools2
	Tools3
	Tools4
	Notice
	Notice1


