gmath Quick Card

Marco Abrate

abrate.m@gmail.com

Contents
1 Installation 1
2 Classes o o e e e 2
3 Methods e 3
4 Additional Functions 7

1 Installation

The following software is required before installing gmath:

e Python 2.x+ (http://www.python.org/)

e NumPy 1.x+ (http://new.scipy.org/download.html)

The first step is to download the qmath tarball from http://pypi.python.org/pypi.
Open a shell. Unpack the tarball in a temporary directory (not directly in Python’s
site-packages). Commands:

tar zxf gmath-X.Y.Z.tar.gz

X, Y and Z are the major and minor version numbers of the tarball. Go to the
directory created by expanding the tarball:

cd gmath-X.Y.Z
Get root privileges:

su

(enter root password)
To install for python type:
python setup.py install

If the python executable isn’t on your path, you’ll have to specify the complete
path, such as /usr/local/bin/python.

2 Classes 2

2 Classes

class quaternion(attitude)

Quaternion class.

attitude can be:

- a number (of any type, complex are included);

>>> import gmath

>>> gmath.quaternion(1)
(1.0)

>>> gmath.quaternion(1+1j)
(1.0+1.01)

a list or a numpy array of the components with respect to 1,1i,j and k;

>>> gmath.quaternion([1,2,3,4])
(1.0+2.0i+3.0j+4.0k)

>>> gmath.quaternion(up.array([1,2,3,4]))
(1.0+2.0i+3.0j+4.0k)

a string of the form ’a+bi+cj+dk’;

>>> gmath.quaternion(’1+1i+3j-2k’)
(1.0+1.0i+3.0j-2.0k)

a rotation about an axis using pairs (rotation angle, axis of rotation);

>>> gmath.quaternion(0.5 * math.pi, [0,0,1])
(0.968912421711+0.247403959255k)

a list whose components are Euler angles;

>>> import math
>>> gmath.quaternion([0.0,math.pi / 6,math.pi / 3])
(0.836516303738+0.4829629131451+0.224143868042j-0.129409522551k)

a 3X3 rotation matrix. The matrix must be given as a numpy array.

import numpy as np

>>> gmath.quaternion(np.array([[0 ,-0.8 ,-0.6],\\
[0.8,-0.36, 0.481,\\
[0.6,0.48 ,-0.641]1))

(0.707106781187i+0.5656854249497+0.424264068712k)

class hurwitz(attitude)

The class of Hurwitz quaternions, i.e. quaternions whose components are integers.
attitude can be the same as for quaternion class, if the components as a quaternion
are integers.

3 Methods 3

3 Methods

repr(self)
Quaternions are represented in the algebraic way: ¢ = a + bi + ¢j + dk, and

a, b, c,d are floats. Components are of float type if self is a quaternion, of integer
type if self is a Hurwitz quaternion.

_getitem _(self, key)
Returns one of the four components of the quaternion. This method allows to
get the components by quaternion [key].

_setitem__(self, key, number)
Set one of the four components of the quaternion. This method allows to set
the components by quaternion[key] = number.

_delitem _(self, key)
Delete (set to zero) one of the four components of the quaternion. This method
allows to write del quaternion[key].

_delslice__(self, keyr, keys)
Delete (set to zero) the components of the quaternion from the key; — th to the
keys — th. This method allows to write del quaternion[1:3].

__contains__(self, key)
Returns 0 if the component of the quaternion with respect to key is zero, 1
otherwise. This method allows to write del ’k’ in quaternion.

>>> q = gmath.quaternion(’1+1i+5k’)
>>> 23’ in q

False

>>> 73’ in q

True

__eq-_(self,other)
Returns True if two quaternion are equal, False otherwise. This method allows
to write quaternionl == quaternion2.

>>> q = gmath.quaternion(’1+1k’)

>>> q == 0
False

>>> q == ’1+1k’
True

Also equalities with a tolerance are admitted:

>>> q == gmath.quaternion([1,0,1e-15,1])|1e-9
True

>>> q == [1,1,1e-15,0]

False

3 Methods 4

_mne__(self,other)
Returns False if two quaternion are equal, True otherwise. This method allows
to write quaternionl != quaternion2.

>>> q = gmath.quaternion(’1+1k’)
!

>>>q !'=0

True

>>> q = ’1+1k’

False
int(self)

Converts sel f components into integers.

>>> q = gmath.quaternion(’1+1i+5k’)
>>> g

(1.0+1.0i+5.0k)

>>> q._int_Q)

(1+1i+5k)

_—iadd__(self,other)
__isub__(self, other)
__imul__(self, other)
_-idiv__(self,other)

These methods are called to implement the augmented arithmetic assignments.
These methods do the operation in-place (modifying self). If other is a Hurwitz
quaternion but its inverse is not, the __idiv__ method raises an error.

__imod__(sel f, other)

This method is called to implement the modular reduction. It is performed
only if self is a Hurwitz quaternion and other is an integer. Otherwise an error is
raised.

_—add__(self, other)
__sub__(sel f, other)
_mul__(self,other)
_div__(self,other)
_mod__(sel f, other)

These methods are called to implement the binary arithmetic operations. For
instance, to evaluate the expression x + y, where x is a quaternion, x.__add__(y)
is called. y can either be a quaternion (or a Hurwitz quaternion) or something that
can be converted to quaternion.

If other is a Hurwitz quaternion but its inverse is not, the __div__ method raises
an error.

The _mod__ method is performed only if self is a Hurwitz quaternion and other is
integer (see __imod__).

3 Methods 5

_rmul__(self, other)
_rdiv__(self,other)

These methods are called to implement the binary arithmetic operations with
reflected operands. If other is a Hurwitz quaternion but its inverse is not, the
_rdiv__ method raises an error.

neg(self)
Return the opposite of a quaternion. You can write - quaternion.

_pow__(sel f, exponent|, modulo)])

Implements the operator **. The power of a quaternion can be computed for
integer power (both positive or negative) and also if the exponent is half or third a
number: for example square or cube roots are evaluated (see also sqrt and croot).
If self is a Hurwitz quaternion, powers are computed only for natural exponents.
Modular reduction is performed for Hurwitz quaternions (if self is a Hamilton
quaternion, modulo is ignored).

>>> base = gmath.quaternion(’1+1i+2j-2k’)
>>> base **x 3

(-26.0-6.0i-12.0j+12.0k)

>>> base ** (-2)

(-0.08-0.02i-0.04j+0.04k)

>>> gmath.quaternion([-5,1,0,1]) ** (1.0/3)
(1.0+1.0i+1.0k)

>>> gmath.quaternion([-5,1,0,1]) ** (2.0/3)
(-1.0+2.0i+2.0k)

>>> gmath.quaternion(’1.0+1.0i+1.0k’) *x* 2
(-1.0+2.0i+2.0k)

>>> gmathcore.hurwitz(’1+1i+1k’) ** 2
(-1+2i+2k)

>>> pow(gqmathcore.hurwitz(’1+1i+1k’),2,3)
(2+2i+2k)

__abs__(self)
Returns the modulus of the quaternion.

equal(sel f, other[, tolerance))
Returns quaternion equality with arbitrary tolerance. If no tolerance is admit-
ted it is the same as __eq__(sel f, other).

>>> a = gmath.quaternion([1,1,1e-15,0])
>>> b = gmath.quaternion(1+1j)

>>> a.equal(b,1e-9)

True

>>> a.equal(b)

False

3 Methods 6

real(self)

Returns the real part of the quaternion.
imag(sel f)

Returns the imaginary part of the quaternion.
trace(self)

Returns the trace of the quaternion (the double of its real part).
conj(self)

Returns the conjugate of the quaternion.
norm(sel f)

Returns the norm of the quaternion (the square of the modulus).
delta(self)

Returns the § of the quaternion, that is the opposite of the norm of the imagi-
nary part of the quaternion.

inverse(sel f[, modulo])

Quaternionic inverse, if it exists. It is equivalent to quaternion ** (-1).
Modular inversion can be performed for Hurwitz quaternions (if self is a Hamilton
quaternion, modulo is ignored).

>>> a = gmath.quaternion([2,-2,-4,-1])
>>> a.inverse()
(0.08+0.081+0.16;j+0.04k)

>>> b = gmath.hurwitz([0,-2,-2,0])

>>> b.inverse(13)

(10i+103)

unitary(self)
Returns the normalized quaternion, if different from zero.

sqrt(self)
Computes the square root of the quaternion. If the quaternion has only two
roots, the one with positive trace is given: if this method returns r, also -r is a root.

croot(self)
Computes the cube root (unique) of a quaternion.

QuaternonToRotation(self)
Converts the quaternion, if unitary, into a rotation matrix.

4 Additional Functions

4 Additional Functions

real(object)

The same as object.real().
imag(object)

The same as object.imag().
trace(object)

The same as object.trace().
conj(object)

The same as object.conj().

norm(object)
The same as object.norm().

delta(object)
The same as object.delta().

inverse(object[, module])
The same as object.inverse([module]).

unitary(object)

The same as object.unitary().
sqrt(object)

The same as object.sqrt().

croot(object)
The same as object.croot().

QuaternonToRotation(object)
The same as object.QuaternioinToRotation().

RotationToQuaternion(angle, vector)
Converts a pair angle-vector into a quaternion.

StringToQuaternion(string)
Converts a string into a quaternion.

MatrixToEuler(matrix)
Converts a 3X3 matrix into a vector having Euler angles as components.

EulerToQuaternion(list)
Converts a vector whose components are Euler angles into a quaternion.

identity()
Returns 1 as a quaternion.

>>> gmath.identity()
(1.0)

4 Additional Functions

zero()
Returns 0 as a quaternion.

>>> gmath.zero()
(0.0)

dot(objecty, objects)
Returns the dot product of two quaternions.

>>> a = gmath.quaternion(’1+2i-2k’)
>>> b = gmath.quaternion(’3-2i+8j’)
>>> gmath.dot(a,b)

-1.0

CrossRatio(a,b,c,d)
Returns the cross ratio of four quaternions defined by:

CrossRatio(a,b,c,d) = (a—c)-(a—d)~' - (b—d)-(b—c)" .

If a = d or b = ¢ returns the string >Infinity’.
The arguments of CrossRatio can be passed as a tuple.

>>> a = gmath.quaternion([1,0,1,0])
>>> b = gmath.quaternion([0,1,0,1])
>>> ¢ = gmath.quaternion([-1,0,-1,0])
>>> d = gmath.quaternion([0,-1,0,-1])

>>> gmath.CrossRatio(a,b,c,d)
(2.0)

>>> tpl = a,b,c,d

>>> gmath.CrossRatio(tpl)
(2.0)

>>> gmath.CrossRatio(a,b,b,d)
’Infinity’

>>> gmath.CrossRatio(a,a,a,d)
(1.0)

>>> gmath.CrossRatio(a,b,a,b)
(0.0)

Moebius(z,a,b, ¢, d)
Returns the Moebius transformation with parameters a,b,c and d:

f(z)=(a-z+0b)-(c-z+d)~ "

If ¢- 2+ d = 0 returns the string >Infinity’.
The arguments of Moebius can be passed as a tuple.

4 Additional Functions

>>> a = gmath.quaternion([1,1,1,0])
>>> b = gmath.quaternion([-2,1,0,1])
>>> ¢ = gmath.quaternion([1,0,0,0])
>>> d = gmath.quaternion([0,-1,-3,-4])
>>> z = gmath.quaternion([1,1,3,4])
>>> gmath.Moebius(z,a,b,c,d)
(-5.0+7.0i+7.0k)

>>>d = -z

>>> z = gmath.Moebius(z,a,b,c,d)

>>> z

’Infinity’

>>> gmath.Moebius(z,a,b,c,d)

(1.0+1.0i+1.0j)

