
BBc-1 : Beyond Blockchain One
- An Architecture for Promise-Fixation Device in the Air -

Kenji Saito and Takeshi Kubo
{ks91|t-kubo}@beyond-blockchain.org

Revision 0.1 – October 31, 2017

1 Introduction

Blockchain technology today has some sustainability risks including cryp-
tographic techniques being used becoming obsolete and the price of native
tokens declining (thus miners get incentivized to leave). There are also other
technological problems and problems of technical governance, involving po-
litical situations surrounding development communities and miners.

BBc-1 (Beyond Blockchain One) is a kind of “middleware” to give long
term solutions to these problems, and at the same time to provide support
for currently ongoing application development. It is designed to implement
requirements specified in “BBc Trust”1, and is being developed as a set of
open protocols and open source software that implement them, obtainable
and usable for free2. We are in the process of forming a global open commu-
nity, a non-profit consortium of corporations and individuals who will keep
working on this project together.

BBc-1 provides proofs of transactions to applications. Initially, it is
done by utilizing proof-of-existence functionality of existing blockchains. A
blockchain to be used for this purpose can be dynamically chosen.

Today, major applications of blockchains can be categorized into two:
currencies (systems for transferring quantities) and assets (systems for prove-
nance and managing rights). BBc-1 will support both, and provide API and
SDK for these.

BBc-1 will work as a collection of nodes being deployed and autonomously
cooperating over virtually maintenance-free environments, minimizing ad-
ministration cost.

The abstraction layer for blockchains will evolve so that it will work
without underlying public ledgers in the near future. In the end, we aim to
replace blockchains themselves with BBc-1.

Figure 1 shows an overview of the BBc-1 architecture.
1 Our charter. Found at https://beyond-blockchain.org/public/bbc-trust.pdf
2 GitHub repository is found at https://github.com/beyond-blockchain/bbc1

1

Bitcoin Other public ledgers

BBc-1Opn and public　 distributed ledger Distributed Storage Management

virtually maintenance-free environment

Applications

V
a

rio
u

s
 o

th
e

r

a
p

p
lic

a
tio

n
s

Digital Currency SDK Digital Asset API Migration Assistant

BBc-1 software

L
o

c
a

l C
u

rre
n

c
y

S
h

o
p

p
in

g
 P

o
in

ts

T
ra

c
e

a
b

ility

. . .

initial target initial target

Initially, proof of existence

depends on external

public ledgers

Storage Services

possible target

Figure 1: BBc-1 Architecture

2 Understanding Blockchains

What blockchains or other kinds of distributed ledgers do can be understood
in terms of functional layers as follows (in the lower-layer-first order):

1. Guarantee of Validity (of transactions)

• The ledger guarantees that a new transaction cannot be mutated,
does not contradict with the existing history of transactions, and
is committed by a user or users who have right to do so.

• The ledger also guarantees that nobody can stop a user or users
who have right to do so to commit a new valid transaction.

2. Proof of Existence (of transactions)

• The ledger provides the proof of existence of a transaction.

• The ledger does not allow anyone to delete the evidence of a
transaction committed in the past, or to fabricate an evidence of
a transaction that has never been committed in the past.

3. Consensus on Uniqueness (of transactions)

2

• If two contradicting transactions were to be committed, all users
of the ledger (will eventually) see the same one of them in their
views of the correct history of transactions.

4. Descriptions of Rules (that define semantics of transactions)

• The ledger allows users to define semantics of transactions. (In
Bitcoin, all transactions are basically about sending bitcoins.)

By providing these functions, a blockchain or a distributed ledger can
act as a “promise-fixation device in the air”, in which nobody can deny the
content or existence of committed promises or records whose validity anyone
can verify, and nobody can stop legitimate users to commit or verify such
promises or records.

We will describe features of BBc-1 in terms of each layer above.

3 Features

3.1 Guarantee of Validity

BBc-1 uses a data structure similar to so-called UTXO (Unspent Trans-
action Output) structure used in Bitcoin and alike, because of its ease of
understanding and of accounting.

To support confidentiality of transactions, BBc-1 works over inter-connected
multiple domains of networks, where the content of transactions, including
identities of involved parties, is visible only within each domain (digital
assets handled in transactions can be encrypted to further support confi-
dentiality).

Figure2 shows the structure of a BBc-1 transaction data, where

Header section contains meta-data of the transaction such as timestamp,

Events section contains set of operations over assets as outputs of the
transaction, and also specifies the parties who can perform further
operations over the assets,

References section contains references to past events and indications of
<signature, public key> pairs in the signatures section as the proof of
identities,

Cross-Ref section contains the identifiers of transactions from different
domains that this transaction provides proof of existence, and

Signatures section contains a set of <signature, public key> pairs that
sign the identifier of this transaction.

3

Header

Intermediate DigestEvents

References

Cross-Ref

Cross-Ref
transaction ID

Signatures

These are used for verifying the existence

of the cross-referenced transactions.

It is extremely difficult to forge such data

that produces a specified transaction ID

and contains indicated transaction IDs to be

verified in the Cross-Ref section.

Signatures

cannot be

verified

outside a domain

Figure 2: Structure of a BBc-1 Transaction Data

Blockchains today generally use the digest of a public key as an identifier
of an external actor. This means that if the corresponding private key is
lost, proving the identity of the user by digital signature will no longer be
possible, and the user loses control of coins or assets forever.

BBc-1 advances solutions to this problem by separating identifiers and
sets of public keys as shown in Figure 3. The binding between an identifier
and a set of public keys is stored in the ledger itself (therefore, the binding is
visible only within the domain, and the signatures cannot be verified outside
the domain).

When verifying a digital signature, a verifier sees whether the specified
public key is bound to the addressed identifier on the ledger or not.

3.2 Proof of Existence

At least in the initial stage of development of BBc-1, a proof of existence
of a transaction is performed by checking the root of a Merkle tree written
onto a public blockchain as illustrated in Figure 4, as commonly practiced
in blockchain applications.

However, because a digest can be calculated by anyone, this method
opens up possibility of attacking to general public. Therefore, we will even-
tually need to adopt a different method than using hash trees (including
Merkle trees) or hash chains.

Instead of these techniques, we will use a cross-reference method in which
a transaction provides proof of existence to a set of non-related past transac-

4

A
A

No

reference

Signatures

section

TX
Addressed

to A

Used for signing

Can be abandoned later

Pairs

used for verifying

Digest of

the public key

must equal the

identifier in

question

A’ s private key
A’ s private keys

A’ s public keys

A’ s identifier

A’s identifier

Addressed

party

that can

alter the

bindng

bound

Multi-signature can

also be used

A’ s public key

A’ s

signature

Event

(initial bind)

public key digest

* An identifier is the digest of a public key, whose pairing private key must be
used for signing the TX that initially binds the identifier and public keys.

Figure 3: Separation of Identifier and Public Keys

tions by containing their identifiers in the cross-ref section of the transaction
data (Figure 5). This type of technique is often referred to as DAG, because
the transactions form a directed acyclic graph of reference relations. In
BBc-1, these cross-references are performed among transactions in unrelated
domains, to minimize possibilities of colluding to alter records.

Moreover, by having timestamp services trusted and chosen by each user
periodically committing time-defining transactions, general transactions can
be proven to have existed in some bounded real-time in the past (again,
Figure 5).

3.3 Consensus on Uniqueness

It has been well known by now that blockchains do not actually achieve
consensus, through some enlightenment efforts or real cases and risks of
hard-forking events.

This problem, we believe, is due to a design fault in which possibility
of consensus among undefined participants is pursued, which we believe is

5

Blockchain

Public Space

User

Proof of Existence and/or Provenance Service

M
e

rk
le

 T
re

e

Merkle Root

Obtain

subtree

Search for the

Merkle Root

Embed

… …

record1 record2 record3 record4

digest

digest

digest

digest digest digest

API

digest

- Tens of thousands of records can form a Merkle tree,

 in which case the height still remains 10-15.

- To prove existence of record1, only subtree shown

 in blue is required to reproduce the Merkle root.

Figure 4: Proof of Existence Scheme using a Blockchain

impossible.
In Bitcoin, for example, coins are purely assets, without being backed

by any debts. This means that when a coin is double-spent (thus the value
is copied and doubled), it is unclear who is at a disadvantage. This in turn
requires such a design that the whole participants as a group must agree
on the uniqueness of transactions, which we know is impossible because we
cannot even define “the whole” in an open environment.

On the other hand, if a coin or an asset is a representation of some debt,
and there is a specific debtor, then it is clear where the motivation lies to
become responsible for assuring the uniqueness of transactions.

Based on this thought, in BBc-1, addressing of payment or transfer of
rights is generally specified with multiple signature requests, where a trans-
action requires a signature of the debtor in addition to that of the current
holder to get committed. This might mean that the debtor is a single point
of failure, but we believe that it can be handled by existing techniques of re-
dundancy and consensus. In BBc-1, because identifiers and public keys are
separated, the requests to debtors for signing can be anycasts (any signature
will do as long as it is verified with a public key bound to the identifier in
question). This means that each redundant node can have its own signing
private key, and the first one to receive the request and to sign can be the
proposer in the consensus protocol to be used, such as (Byzantine) Paxos.

6

Timer

TX

Cross-Ref

section

Timer

TX

Cross-Ref

section

TX

Cross-Ref

section TX

Cross-Ref

section
TX

Cross-Ref

section

Time

Trusted time stamp services periodicaly commit timer TXs

refer

Proven to have

happened before t1

Proven to have happened

between t1 and t2

refer

refer

refer

Time t1 Time t2

refer

Figure 5: Proof of Existence of Transactions and its Time

3.4 Descriptions of Rules

In the future, BBc-1 will allow users to define smart contracts with languages
designed for that purpose, but the mechanism for it is now in the process of
being designed.

At least in the initial stage of development of BBc-1, applications will
have to include their own logic to define and interpret the semantics of
transactions they handle. We provide an SDK for the purpose.

3.5 Networking

Detailed descriptions of our intra-domain and inter-domain networking will
appear.

4 Design Tasks

The following is the list of design tasks for us to work on:

• How transactions are committed by multiple signing actors represent-
ing a single user. This is a normal consensus problem that should be
solved by some (Byzantine) Paxos protocol, but we need to develop a
standard way of doing so for BBc-1 transactions.

• An efficient way to confirm the proof of existence using cross-reference
technique.

• Mechanism and languages for smart contracts.

• How to interface with existing storage services.

7

– It is thought beneficial to use external storage service for ease of
deployment and guaranteeing the data storage.

• Incentives for nodes to join (probably better not to depend on issuing
coins; but rather a tit-for-tat mechanism that disallows BBc-1 services
to those who do not really participate in the network).

Revision History

Rev.0.1 2017-10-31 Initial revision

— End of Document —

8

