
Classification of long noncoding RNAs by k-mer content 

 

Jessime M. Kirk 1,2,4,*, Daniel Sprague1,3,4,*, and J. Mauro Calabrese1,2,3,4# 

 

1 Department of Pharmacology, 

2 Curriculum in Bioinformatics and Computational Biology, 

3 Curriculum in Pharmacology, 

4 Lineberger Comprehensive Cancer Center, 

University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599. 

 

* Co-first authors 

# Correspondence, jmcalabr@med.unc.edu 

 

 

 

 

  



Abstract 

K-mer based comparisons have emerged as powerful complements to BLAST-like alignment 

algorithms, particularly when the sequences being compared lack direct evolutionary 

relationships. In this chapter, we describe methods to compare k-mer content between groups of 

long noncoding RNAs (lncRNAs), to identify communities of lncRNAs with related k-mer contents, 

to identify the enrichment of protein-binding motifs in lncRNAs, and to scan for domains of related 

k-mer contents in lncRNAs. Our step-by-step instructions are complemented by Python code 

deposited in Github. Though our chapter focuses on lncRNAs, the methods we describe could be 

applied to any set of nucleic acid sequences. 

 

  



1) Introduction 

 Upwards of 80% of the human genome can be transcribed into RNA. Of the total number of 

transcribed nucleotides, approximately one half comprise pre-messenger RNAs (pre-mRNAs) 

that will ultimately become spliced and encode for proteins in the cytoplasm. The other half 

comprise long noncoding RNAs (lncRNAs), defined as RNA species that are greater than 200 

nucleotides in length and have little or no potential to encode for proteins. Compared to transcripts 

produced from protein-coding genes, lncRNAs are, on average, less conserved, transcribed at 

lower levels, spliced less efficiently, and more likely to remain in the nucleus [1–6].  

 Nevertheless, a growing number of lncRNAs have been studied experimentally, and are now 

known to play important roles in health and development. Some of the most notable of these 

include the lncRNA XIST, which orchestrates transcriptional silencing during X-chromosome 

Inactivation [7], the lncRNAs NEAT1 and MALAT1, which play roles in nuclear organization and 

have context-dependent functions in development and in cancer [8–14], and the lncRNA NORAD, 

which helps to maintain genome stability by promoting DNA repair [15, 16]. LncRNAs have also 

been found to play important roles in developmental transitions [17–23], in the immune system 

[24–26], in the brain [27–33], and in the heart [34–37]. These identified roles, coupled with the 

large number of lncRNAs that have yet to be studied experimentally, suggest that lncRNAs with 

important physiological functions remain to be discovered.  

Still, identifying function in lncRNAs remains a major challenge. Many lncRNAs are thought to 

function as hubs that concentrate proteins, DNA, and possibly other biomolecules in particular 

regions of the cell, yet the sequence characteristics that give rise to these functions and the 

mechanisms through which they occur are poorly defined, even for the best studied lncRNAs [38–

42]. Moreover, relative to protein-coding genes, lncRNAs are poorly conserved, evolve rapidly, 

and are prone to changes in gene architecture, limiting the extent to which traditional phylogenetic 

analyses can be employed to identify the sequence features that are important for specifying their 



function [43]. As an example, placental mammals express the XIST lncRNA to orchestrate gene 

silencing during X-Chromosome Inactivation [7], while marsupial mammals independently 

evolved their own lncRNA to orchestrate X-Chromosome Inactivation, termed Rsx. Remarkably, 

XIST and Rsx share no significant similarity by standard methods of sequence alignment [44, 45]. 

Thus, even though Rsx and XIST presumably function through analogous mechanisms, standard 

tools of sequence comparison are unable to detect the analogy. This problem extends to all 

lncRNAs. The sequence patterns that specify recurring functions in lncRNAs are largely unknown 

and difficult to detect computationally. Thus, to date, lncRNA functions must be determined 

empirically, on a case-by-case basis.  

Recently, we developed a method of sequence comparison based on the notion that different 

lncRNAs likely encode similar functions through different spatial arrangements of related 

sequence motifs, and that such similarities might not be detectable by traditional methods of linear 

sequence alignment [46]. In our method, which we termed SEEKR (sequence evaluation through 

k-mer representation), the sequences of any number of lncRNAs are evaluated by comparing the 

standardized abundance of nucleotide substrings termed “k-mers” in each lncRNA, where k 

specifies the length of the substring being counted, and is typically set to values of k = 4, 5, or 6. 

SEEKR counts k-mers independent of their position in sequences of interest, much like the “bag 

of words model” used by many language processing algorithms, in which sentences are classified 

by word abundance without regards to grammar or syntax [47]. Using SEEKR, we demonstrated 

that k-mer content correlates with lncRNA subcellular localization, protein-binding, and repressive 

function, and that evolutionarily unrelated lncRNAs with analogous functions shared significant 

levels of non-linear sequence similarity even when BLAST-like alignment algorithms could detect 

none [46]. 

Below, we walk users through five related applications of SEEKR that we have found to be 

useful. For each application, we enumerate step-by-step instructions. Where relevant, we include 



code to execute specific functions in python. We have deposited standalone python code to run 

the major applications of SEEKR in Github (https://github.com/CalabreseLab/seekr). For the 

simplest implementation of SEEKR, we refer users to a web portal (http://seekr.org). K-mer based 

classification schemes have been used in many biological contexts ([48–56] and others). 

Therefore, beyond lncRNAs, the methods that we describe should prove useful in the study of 

other nucleic acid sequences, such as 5' and 3' untranslated regions of mRNAs and DNA 

regulatory elements. 

 

2) Materials 

2.1) Hardware Requirements 

Personal computer, preferably with a multi-core processor and at least 8GB of RAM. 

2.2) Software Requirements 

1. Python >=3.6. The easiest way to get started with Python is by downloading the Anaconda 

distribution: https://www.anaconda.com/download. 

2. The python packages: numpy, pandas, networkx, python-igraph, louvain. All of these can be 

installed by running $ pip install [name]. 

3. R, which can be installed from https://www.r-project.org/. 

4. The R packages amap and ctc. amap is hosted at https://cran.r-

project.org/web/packages/amap/index.html, and ctc at 

https://bioconductor.org/packages/release/bioc/html/ctc.html. Both can be installed by running: 

and can be installed by running: 

source("http://bioconductor.org/biocLite.R") 

biocLite("amap") 

biocLite("ctc") 

5. Java 1.8. See this page for help installing java: 

https://www.java.com/en/download/help/download_options.xml 



6. Java Treeview. http://jtreeview.sourceforge.net/ 

7. Gephi, which can be installed from https://gephi.org/users/download/.  

8. SEEKR (optional). SEEKR is hosted at pypi: https://pypi.org/project/seekr/, and can be 

installed by running $ pip install seekr. SEEKR works on Mac and Linux. As of the time 

of publication, there is a bug installing several dependencies of SEEKR if using Anaconda 

Python on MacOS. As a workaround in macOS 10.14.x, run $ 

MACOSX_DEPLOYMENT_TARGET=10.14 pip install seekr. To print the documentation 

associated with each SEEKR command line tool, simply type the name of the tool in the UNIX 

terminal (e.g. $ seekr_download_gencode). 

 

3) Methods  

3.1) Comparing k-mer contents between a group of lncRNAs 

3.1.1 Download lncRNA sequences 

LncRNA sequences can be downloaded from https://www.gencodegenes.org/. For this analysis, 

we'll use human v22: 

ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_22/gencode.v22.lncRNA_tr

anscripts.fa.gz 

and mouse v5: 

ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M5/gencode.vM5.lncRNA_t

ranscripts.fa.gz. Unzip these files to produce gencode.v22.lncRNA_transcripts.fa and 

gencode.vM5.lncRNA_transcripts.fa.gz. The following pipeline will be demonstrated using just 

the gencode.v22.lncRNA_transcripts.fa file. Mouse, or any other fasta file, can be substituted 

instead. 

 



Downloading and unzipping can be done manually. Alternatively, if SEEKR is installed locally, 

you can also download the files from the command line. Use “lncRNA” to specify the biotype of 

transcripts file, and the “--release" flag to indicate you want a particular version of the fasta file: 

$ seekr_download_gencode lncRNA -r 22 

 

3.1.2 Select 01 isoform 

To avoid bias that may be introduced by counting k-mers across multiple isoforms of the same 

transcript, we typically only select transcripts ending in 01, which in prior versions of GENCODE, 

represented the canonical isoform of a gene product. Using this filter, each genomic locus is only 

represented once. 

fasta_path = 'v22_lncRNA.fa'  (see note 1)  

with open(fasta_path) as infasta: 

    data = [l.strip() for l in infasta] 

    headers = data[::2] 

    seqs = data[1::2] 

     

fasta01_path = 'v22-01.fa' 

with open(fasta01_path, 'w') as outfasta: 

    for header, seq in zip(headers, seqs): 

        common_name = header.split('|')[4] 

        if common_name.endswith('01'): (see note 2) 

            outfasta.write(header+'\n') 

            outfasta.write(seq+'\n') 

 

To accomplish the same using the command line tool, pass seekr_canonical_gencode the 

name of the GENCODE fasta file and a path to the newly filtered fasta file: 



$ seekr_canonical_gencode v22_lncRNA.fa v22-01.fa 

 

3.1.3 Count k-mers  

Next, we define a 2D matrix where each row represents one transcript, each column represents 

a k-mer, and each element is a normalized and standardized count of how many times a k-mer is 

found in a transcript. A single row of the matrix, then, defines a “k-mer profile” for a given lncRNA. 

import pickle 

import numpy as np 

import pandas as pd 

 

from collections import defaultdict 

from itertools import product 

 

# Read fasta file 

fasta_path = 'v22-01.fa' 

with open(fasta_path) as infasta: 

    data = [l.strip() for l in infasta] 

    headers = data[::2] 

    seqs = data[1::2] 

 

# Initialize data 

k=6 

kmers = [''.join(i) for i in product('AGTC', repeat=k)] 

k_map = dict(zip(kmers, range(4**k))) 

counts = np.zeros([len(seqs), 4**k], dtype=np.float32) 

 



# Do counting 

for i, seq in enumerate(seqs): 

    row = counts[i] 

    count_dict = defaultdict(int) (see note 3) 

    length = len(seq) 

    increment = 1000/length 

    for c in range(length-k+1): (see note 4) 

        kmer = seq[c:c+k] 

        count_dict[kmer] += increment 

    for kmer, n in count_dict.items(): 

        if kmer in k_map: (see note 5) 

            row[k_map[kmer]] = n 

             

# Normalize 

counts -= np.mean(counts, axis=0) 

counts /= np.std(counts, axis=0) 

counts += abs(counts.min()) + 1 (see note 6) 

counts = np.log2(counts) 

 

# Save csv file 

out_path = 'v22-6mers.csv' 

seen = set()(see note 7) 

names = [] 

for h in headers: 

    name = h.split('|')[4] 

    if name in seen: 



        name += 'B' 

    seen.add(name) 

    names.append(name) 

pickle.dump(names, open('v22_names-B.pkl', 'wb')) 

df = pd.DataFrame(counts, names, kmers) 

df.to_csv(out_path, float_format='%.4f') 

 

Using the command line tool:  

$ seekr_kmer_counts v22-01.fa -o v22_6mers.csv 

 

3.2) Hierarchical clustering of lncRNAs by k-mer content 

3.2.1 Cluster with amap 

The visualization tool Java Treeview allows for interactive exploration of large hierarchical 

clusters. Treeview parses clusters defined by a set of three plaintext files, which describe the 

structure of row and column clusters: .gtr, .atr, and .cdt. These files can be conveniently produced 

by the R packages `amap` and `ctc`, which parse a .csv file such as v22_6mers.csv. The R script 

`treeview_cluster.r` will create the Treeview files: 

 

make_treeview <- function(csv, out_gtr, out_atr, out_cdt){ 

  library(amap) 

  library(ctc) 

   

  kmers <- read.csv(csv, header=TRUE, row.names=1) 

  kmers <- round(scale(kmers, scale=FALSE), 6) 

   

  # Generate distance matrix using pearson distance 



  dist_mat <- Dist(kmers, method="correlation",  nbproc=4) 

  dist_mat_trans <- Dist(t(kmers), method="correlation",  nbproc=4) 

   

  # Clustering using average agglomeration method 

  clust_row <- hclust(dist_mat,method="average") 

  clust_col <- hclust(dist_mat_trans,method="average") 

   

  # Exporting the gtr, atr and cdt files 

  r2gtr(clust_row,file=out_gtr, distance=clust_row$dist.method, 

dec='.', digits=5) 

  r2atr(clust_col,file=out_atr, distance=clust_col$dist.method, 

dec='.', digits=5) 

  r2cdt(clust_row, clust_col, kmers, labels=FALSE, description=FALSE, 

file=out_cdt, dec='.')     

} 

 

args <- commandArgs(trailingOnly = TRUE) 

do.call(make_treeview, as.list(args)) 

 

While this script is not part of the seekr module, it can be called from the command line using: 

$ Rscript treeview_cluster.r v22_6mers.csv v22_6mers.gtr v22_6mers.atr 

v22_6mers.cdt 

 

3.2.2 Visualize in java treeview 



Launch Treeview, and give Java access to plenty of memory. If insufficient memory is allocated, 

Treeview will not be able to open the .cdt file. Starting Treeview with 14GB of memory can be 

done by: 

$ java -Xmx14000m -jar ~/Downloads/Setups/TreeView-1.1.6r4-

bin/TreeView.jar 

Substitute the correct path to your TreeView.jar file. Once started, open v22-6mers.cdt via "File" 

-> "Open". After the file is loaded, change the visualization settings by: "Settings" -> "Pixel 

Settings...". Find the "Global" section of the pop-up window. Click "Fill" for both "X" and "Y". In the 

"Contrast" section, set "Value" to 1. In the "Colors" section click "YellowBlue". Close the pop-up 

window. 

The image can be saved by "Export" -> "Save Thumbnail Image" -> "Save".  

An ordered list of all transcript names can be exported as well. To do so, you must first select all 

transcripts. The easiest way to do this is to click on the far left of the dendrogram, so that a portion 

of the transcripts are highlighted in red. Hold down the up-arrow until all transcripts are highlighted 

in red. Then click "Export" -> "Save List" -> "Save". 

 

3.3) Identifying communities of lncRNAs with related k-mer contents 

It takes several steps to convert k-mer profiles into the form needed for identifying communities. 

We first build an adjacency matrix, describing all pairwise relationships between all lncRNAs, then 

use the matrix to build a network of lncRNAs. Finally, we can use a network algorithm to assign 

a community label to each lncRNA. 

 

3.3.1 Build adjacency matrix 

First, we need to build an adjacency matrix. This matrix describes how similar each lncRNA is to 

all other lncRNAs, as measured by their Pearson’s r-values.  

import pandas as pd 



import numpy as np 

 

counts = 'v22_6mers.csv' 

counts = pd.read_csv(counts, index_col=0) 

adjacency = np.corrcoef(counts.values) 

adjacency = pd.DataFrame(adjacency, counts.index, counts.index) 

adj_path = 'v22_adj.csv' 

adjacency.to_csv(adj_path, float_format='%.4f') 

 

To calculate our adjacency matrix, we want to compare our k-mer counts file against itself. The 

seekr command line tool is capable of comparing two separate counts files, so in this case, we 

need to pass our counts file twice: 

$ seekr_pearson v22_6mers.csv v22_6mers.csv -o v22_adj.csv (see note 

8) 

 

3.3.2 Sparsify the matrix 

To decrease the runtime of community calculation, we can reduce the number of edges in the 

network, by sparsifying the adjacency matrix by thresholding below a limit. That is, if the Pearson's 

r-value between two transcripts is less than the limit, we set that element of the matrix to 0, which 

removes that edge from our network. However, there is no single best threshold value; it depends 

heavily on the specific experiment and factors such as the k-mer size used. For example, smaller 

k-mer sizes will likely need higher thresholds. Therefore, it may be worthwhile to test multiple 

thresholds. One possible guideline is the mean and standard deviation of the r-values in the 

adjacency matrix. Two standard deviations above the mean (i.e. the 95th percentile in a normal 

distribution) is one viable threshold, and easy to compute. In our original publication of SEEKR, 



we used 0.13 as a threshold, which is what we will use here, but we will also demonstrate how 

one would calculate a reasonable threshold de novo: 

import pandas as pd 

import numpy as np 

 

adj = 'v22_adj.csv' 

adjacency = pd.read_csv(adj, index_col=0) 

print(adjacency.values.mean() + 2*adjacency.values.std()) 

limit = .13 (see note 9) 

np.fill_diagonal(adjacency.values, 0) (see note 10) 

adjacency[adjacency < limit] = 0 

new_adj = 'v22_adj_p13.csv' 

adjacency.to_csv(new_adj, float_format='%.4f')  

 

In addition to calculating the mean and standard deviation, you can quickly visualize the 

adjacency matrix from the command line. This will create a pdf file that contains a graph of the 

distribution of all elements in the adjacency matrix and markings denoting the mean of the 

distribution as well as one and two standard deviations above the mean. Empirically, we have 

found that a Pearson’s r value of two standard deviations above the mean provides an intuitive 

threshold that can be used to sparsify any adjacency matrix: 

$ seekr_visualize_distro v22_adj.csv v22_adj.pdf 

 

3.3.3 Convert adjacency matrix to network and find communities 

Once the sparse adjacency matrix has been made, communities can be called with the Louvain 

algorithm. To use the Louvain algorithm, the adjacency matrix needs to be converted to a network. 

In this data structure, each lncRNA is represented as a “node” and each non-zero element of the 



adjacency matrix represents an “edge” between two nodes, describing their similarity. The 

Louvain algorithm attempts to find communities of nodes having significantly more edges between 

the nodes within a given community than edges connecting nodes between different communities. 

Finally, we label each node with the name of the transcript and the community it's found in before 

saving the graph for visualization. In addition to saving the full graph, we will also produce a two-

column csv file where the first column is the name of the lncRNA and the second is the community 

to which the lncRNA belongs. 

import numpy as np 

import networkx 

import igraph 

import louvain 

 

adj = 'v22_adj_13.csv' 

adjacency = pd.read_csv(adj, index_col=0) 

graph = networkx. from_pandas_dataframe(adjacency) 

adjacency = None (see note 11) 

 

# Save subgraph 

subgraphs = list(networkx.connected_component_subgraphs(graph)) 

graph_sizes = [sub.size() for sub in subgraphs] 

main_sub = subgraphs[graph_sizes.index(max(graph_sizes))] 

gml_path = 'v22_sub.gml' 

networkx.write_gml(main_sub, gml_path) (see note 12) 

 

# Find communities with Louvain 

gamma = 1 (see note 13) 



ig_graph = igraph.Graph.Read_GML(gml_path) 

partition = louvain.find_partition( 

    ig_graph, louvain.RBConfigurationVertexPartition, 

    weights='weight', resolution_parameter=gamma) 

n_comms = 5 (see note 14) 

zipped = zip(main_sub.nodes(), partition.membership) 

name2group = {k:v if v <= n_comms-1 else n_comms for k, v in zipped} 

networkx.set_node_attributes( 

    main_sub, name='Group', values=name2group) 

networkx.write_gml(main_sub, gml_path) 

 

# Save lncRNA communities to csv 

with open('communities.csv') as out_file: 

    for lncRNA in graph.nodes(): 

        group = name2group.get(lncRNA, n_comms-1) 

        out_file.write(f'{lncRNA},{group}\n') 

 

Again, the thresholding value is experiment specific. For that reason, it is a required argument for 

the command line script. In the instance below, we also save the full gml file, with the “-g" flag, 

and the two-column csv file listing lncRNAs and communities, with the “-c" flag: 

$ seekr_graph v22_adj.csv 0.13 -g v22_sub.gml -c v22_comms.csv 

 

3.3.4 Visualize in Gephi 

Gephi is open-source software that is useful for visualizing lncRNA community graphs. On launch, 

Gephi will provide you with a "Welcome" pop-up window. In the "New Project" section, click "Open 

Graph File". Select `v22_sub.gml`. If loaded correctly, you will receive an "Import report" listing 



the number of nodes and edges as well as other graph details. Click "OK". In the center of the 

main application window, you should see a small black circle. This is the default layout and 

coloring of the graph. Next, we'll color and properly layout the nodes. In the top left of the window, 

there will be an "Appearance" section. Click "Nodes" -> "Partition" -> "Choose an attribute" -> 

"Group" -> "Apply". After a few seconds, the nodes of the graph should be colored by group. On 

the bottom left, there is a section called "Layout". Click "Choose a layout" -> "Yifan Hu" -> "Run". 

Running the layout will take time. Progress can be tracked in the bottom right. Once finished, save 

the image by clicking: "File" -> "Export" -> "SVG/PDF/PNG file" -> "Options". Set "Width" and 

"Height" to 4096. Click "OK". Name your file and click "Okay" again. Saving the image will also 

some take time.  

 

3.4) SEEKR Python 

The command line tools are a convenient way to use SEEKR. However, to gain additional 

flexibility and performance, one can also consider using SEEKR as a Python module. The code 

below demonstrates the same pipeline as above (from downloading a fasta file from GENCODE 

to producing a csv file of lncRNA communities), but runs >10x faster than the command line tools: 

import numpy as np 

import pandas as pd 

from seekr import fasta, kmer_counts, graph 

 

downloader = fasta.Downloader() 

downloader.get_gencode(biotype='lncRNA', release='22') 

fasta_path = 'v22_lncRNA.fa' 

fasta01_path = 'v22-01.fa' 

maker = fasta.Maker(fasta_path, fasta01_path) 

maker.filter1() 



names = fasta.Maker(fasta01_path).names 

counter = kmer_counts.BasicCounter(fasta01_path, log2=False) 

counter.get_counts() 

adj = pd.DataFrame(np.corrcoef(counter.counts), names, names) 

comms_path = 'comms.csv' 

gm = graph.Maker(adj, csv_path=comms_path, threshold=0.13, 

leiden=False) 

gm.make_gml_csv_files() 

 

 

3.5) Scaling k-mer profiles by protein-binding motifs (Positional Weight Matrices) 

One of the underlying assumptions of SEEKR is that lncRNAs derive function from the proteins 

that they bind. Therefore, a logical step is to utilize the k-mer profile of a given sequence to predict 

proteins that may bind that sequence. To do this, one can scale k-mer profiles by position weight 

matrix probabilities (PWMs). We outline this methodology below. 

Our code is written to input PWMs in the format provided by the CisBP-RNA database [57]. 

To download, navigate to http://cisbp-rna.ccbr.utoronto.ca/bulk.php. In ‘By Species’, select 

Homo_sapiens, then click ‘Download Species Archive’ and in the new page click ‘Download’. 

However, any PWM can be used if formatted correctly. Individual PWMs must be tab separated 

and saved in a .txt file. Each PWM must contain a header row with entries [Pos, A,C,G,U]. The 

‘Pos’ column contains integers representing the position within the PWM. Each row must sum to 

1, excluding the index column, thereby representing the probability of finding each nucleotide at 

each position within the motif.  

This code iterates through the PWM files in pwm_directory and calculates the probability 

of observing all k-mers within each motif. The probability of observing a k-mer in a motif is 

calculated as the independent probability of observing each nucleotide of the k-mer at the 



corresponding position within the motif. The weight is then the sum of possible frames that a k-

mer could occur in, for example a 5-mer could fall in two different frames in a 6bp motif. Prior to 

running the code below, users need to derive k-mer counts in the lncRNAs of interest, as specified 

in Section 3.1. 

 

import pandas as pd 

import numpy as np 

from itertools import product 

from pathlib import Path 

 

# path to PWMs 

pwm_directory = 'cisbp_pwms/pwms_all_motifs/' 

 

pwm_directory = Path(pwm_directory) 

 

# k-mer counts are produced by seekr_kmer_counts (See section 3.1) 

counts_path = 'v22_6mers.csv'  

 

k = 5 (see note 15) 

kmers = [''.join(p) for p in product('AGTC', repeat=k)] (see note 16) 

z_scores = pd.read_csv(counts_path, index_col=0) 

score_dict = {} 

for pwm_path in pwm_directory.glob('*.txt'): 

    try: 

        pwm = pd.read_csv(pwm_path, sep='\t') 

    except pd.errors.EmptyDataError: 



        print(f'The motif file {pwm_path} is empty. Skipping.') 

        continue 

    pwm.drop('Pos', axis=1, inplace=True) 

    pwm = pwm.rename(columns={'U': 'T'}).to_dict() 

    kmer2weight = dict(zip(kmers, np.zeros(4 ** k))) 

    motif_len = len(pwm['A']). 

    if motif_len < k: (see note 17) 

        kmers_within_kmer = [([kmer[i:i+4] for i in range(k-4+1)], 

kmer) for kmer in kmers] 

        n_kmers = motif_len - 4 + 1 

        for sub_kmers, kmer in kmers_within_kmer: 

            for sub_kmer in sub_kmers: 

                for frame in range(n_kmers): 

                    weight = 1 

                    for pos, nucleotide in enumerate(sub_kmer): 

                        weight *= pwm[nucleotide][pos + frame] 

                    kmer2weight[kmer] += weight 

    else: 

        for kmer in kmers: 

            n_kmers = motif_len - k + 1 

            for frame in range(n_kmers): 

                weight = 1 

                for pos, nucleotide in enumerate(kmer): 

                    weight *= pwm[nucleotide][pos+frame] 

                kmer2weight[kmer] += weight 



    sorted_weights = np.array([kmer2weight[k] for k in 

z_scores.columns]) 

    weighted_z_scores = z_scores.values.copy() * sorted_weights 

    scores_sums = weighted_z_scores.sum(axis=1) 

    score_dict[pwm_path.name] = scores_sums  

 

#save output 

out_df = pd.DataFrame.from_dict(score_dict, orient='index', 

columns=z_scores.index) 

out_path = 'pwm_weighted_SEEKR.csv' 

out_df.to_csv(out_path) 

 

 

3.5.1 Using the command line tool (specify k-mer length if not using k = 5): 

$ seekr_pwm cisbp_pwms/pwms_all_motifs v22_6mers.csv -k 6 –o 

pwm_weighted_SEEKR.csv 

 

3.6) Scanning lncRNAs for domains of related k-mer contents 

This program is designed to scan a set of fasta sequences, or ‘targets’, for regions of high 

correlation to a set of sequences that we define as the ‘query’ sequences. Typical query 

sequences might represent functional domains in lncRNAs of interest. Targets are broken up into 

sliding windows with length and slide designated by the user. Correlations from each tile are then 

compared against a ‘reference’ set of sequences that are specified by the user. 

This program iterates through k-mer counting three times, which we show explicitly below for 

completeness. The first iteration calculates the k-mer profile of a query sequence, the second 

iteration calculates the k-mer profiles for each tile in the target sequence, and the final iteration 



calculates the k-mer profile for each transcript in the reference set of sequences and correlates 

them with the query k-mer profiles. This last calculation yields a distribution of Pearon’s correlation 

values from which we can derive the ranks of our targets relative to the queries. 

 

import pandas as pd 

import numpy as np 

 

from itertools import product 

from collections import defaultdict 

from scipy.stats import pearsonr 

from scipy.stats import percentileofscore 

 

from seekr.kmer_counts import BasicCounter 

from seekr.fasta_reader import Reader 

 

# Path to a query of interest (in this example, the sequence of repeat 

# B in the lncRNA Xist) 

query_path = 'mm10_xist_repeatB.fa' 

 

# This performs standard SEEKR for the query 

query = Reader(query_path).get_seqs()[0] 

window = 1000 (see note 18) 

slide = 100 

k = 5 

kmers = [''.join(p) for p in product('ATCG', repeat=k)] 

k_map = dict(zip(kmers, range(4**k))) 



 

mean_path, std_path = 'mean.npy', 'std.npy' 

mean = np.load(mean_path) 

std = np.load(std_path) 

 

query_counter = BasicCounter(k=k, mean=mean, std=std) 

query_counter.seqs = [query] 

query_counter.get_counts() 

query_counts = query_counter.counts 

 

q_vs_t_rvals = [] 

target_path = 'mm10_kcnq1ot1.fa' 

target = Reader(target_path).get_seqs()[0] 

tiles = [] 

for i in range(0, len(target), slide): 

    end = i + window 

    tiles.append(target[i: end]) 

tiles[-1] += target[end:] 

 
tile_counter = BasicCounter(k=k, mean=mean, std=std) 

tile_counter.seqs = tiles 

tile_counter.get_counts() 

 

q_vs_t_rvals = np.array([pearsonr(query_counts[0], 

tile_counter.counts[i])[0] for i in range(len(tiles))]) 

q_vs_ref_rvals = [] 



ref_path = 'v22-01.fa' 

ref = Reader(ref_path).get_seqs() 

ref_counter = BasicCounter(k=k, mean=mean, std=std) 

ref_counter.seqs = ref 

ref_counter.get_counts() 

ref_counts = ref_counter.counts 

 

q_vs_ref_rvals = np.array([pearsonr(query_counts[0], ref_counts[i])[0] 

for i in range(len(ref))]) 

ranks = [] 

for tile_corr in q_vs_t_rvals: 

 ranks.append(percentileofscore(q_vs_ref_rvals, tile_corr, 

kind='rank')) 

 

query_target_df = pd.DataFrame(q_vs_t_rvals) 

query_target_df_out = 'query_target_pearson.csv' 

query_target_df.to_csv(query_target_df_out) 

ranks_df = pd.DataFrame(ranks) 

ranks_df_path = 'ranks.csv' 

ranks_df.to_csv(ranks_df_path) 

 

3.6.1 Command line usage  

This tool requires several pieces of data. 1) A fasta file containing one or more query sequences, 

2) A second fasta file containing one or more target sequences which will be tiled into domains, 

3) The mean and standard deviation vectors for normalization (e.g. appropriate output from 

`seekr_norm_vectors`). You can then select the locations for one or both of the possible output 



files with the ‘-r’ and the ‘-p' flags. The ‘-r’ flag prints a matrix of Pearson’s r values describing the 

similarity between each query and each tile in each target, and the ‘-p’ flag prints a corresponding 

matrix of the percentile rankings of the Pearson’s r values relative to a reference set of sequences. 

If you use the ‘-p’ flag you must also use the ‘-rp’ flag, which specifies the reference set of 

sequences to be used in percentile calculations; for example, ‘v22-01.fa’. Also, ensure that the ‘-

k' flags passed to `seekr_norm_vectors` and `seekr_domain_pearson` are the same: 

$ seekr_norm_vectors v22-01.fa –k 5 

$ seekr_domain_pearson mm10_xist_repeatB.fa mm10_kcnq1ot1.fa mean.npy 

std.npy -rp v22-01.fa –k 5 –r r_values.csv –p percentiles.csv 

 

4) Notes 

1. If you manually download this file from GENCODE’s website, it will be called 

“gencode.v22.lncRNA_transcripts.fa”. 

2. In human, there are a few genomic regions where the canonical isoform is not -001, but -

*01 instead, usually -201. It is worth manually examining the GENCODE annotations to 

ensure that your lncRNA spliceform of interest is included in your analyses. 

3. While it is possible to directly increment the numpy array for each k-mer, randomly 

accessing the array is slow when done billions of times. Instead, a dictionary is used to 

collect the counts for a single transcript. That way, each element of the array can be 

accessed only once. 

4. Because we want to count overlapping k-mers we cannot use Python's built-in `count` 

method, and need to manually iterate over the strings ourselves.  

5. k-mers that contain non-ACGT nucleotides (eg. ATCGGN) are skipped. 

6. In our original publication describing SEEKR, log normalization was not used. In a limited 

number of tests, we have found that log normalizing k-mer counts prior to performing 



Pearson’s correlation mildly improves our ability to detect biological meaningful trends. In 

general, log normalization is an appropriate way to reduce skew in data, and k-mer counts, 

especially in repetitive regions of RNA, are often skewed. If log2 normalization is not 

desired, pass the `-nl` flag to `seekr_kmer_counts`. 

7. GENCODE transcript names are not necessarily unique. To be able to use names as the 

index of an R DataFrame, 'B' is appended to transcript names that have already occurred. 

8. This array is approximately 250 million elements (16,000 by 16,000 r-values). For a 

significant efficiency increase (~50x speed, 2x space), consider using the binary flags `--

binary_input` and/or `--binary_output` when running seekr_pearson. Also note that 

usage of these flags may require additional adjustment to flags in other stages of the 

SEEKR pipeline.  

9. The 0.13 Pearson value as a threshold was chosen as a balance between computational 

efficiency and information retention. In GENCODE v22, the Pearson’s value of 0.13 is 

approximately two standard deviations above the mean similarity between all pairwise 

lncRNA comparisons. Overall, we found little to no difference in community definition, 

correlation with lncRNA localization, or ability to predict protein-binding patterns over a 

range of limit values. 

10. The diagonal of the matrix contains all ‘1’ values, since the k-mer profile of a transcript 

versus itself is a perfect correlation. These edges are not useful for defining communities, 

so we remove them. 

11. This is just done to clear some memory. 

12. Writing out to disk at this point is simply used as a way to convert between a networkx 

graph and an igraph graph. The igraph version is needed for running louvain. There are 

likely better ways of doing this. 

13. Gamma is the resolution parameter for the Louvain algorithm, and is used to tune how 

many communities are found. Gamma must be greater than 0, and the larger the value, 



the more communities will be created; consequentially, community sizes are smaller at 

larger gamma values. We chose to stay with the default resolution parameter, 1, which 

was supported by CHAMP [58].  CHAMP is an algorithm which can help provide context 

for which values of gamma might be most appropriate for a given graph. 

14. Choosing the number of communities can be difficult. We used an estimate based on the 

hierarchical heatmap, in combination with the size of the communities. In our original 

publication of SEEKR, community 6 was significantly smaller than community 5 (relative 

to the ratio between, community 5 and 4, or 4 and 3, etc.; [46]). n_communities is defined 

here so we can cap the number of communities found by the Louvain algorithm before 

adding values to the main subgraph below. 

15. k = 5 is a reasonable default because it tends to strike a balance between decreasing 

sparsity in k-mer profiles while still retaining good discrimination between queries and 

targets. 

16. Nucleotide entries in this list must be in exactly the same order as used in Section 3.1, 

‘AGTC’. 

17. This loop is designed to find all 4-mers within the larger k-mer if the value of k is larger 

than the length of the motif. For example, the 5-mer ATCGT does not exist within a 4 base 

pair motif, but two 4-mers within the 5-mer, ATCG and TCGT can fit within a 4 base pair 

motif. This loop calculates the probabilities of observing the 4-mers separately and then 

sums the result. No motif in CisBP-RNA database is < 4 base pairs, hence the default of 

k = 4. 

18. The window and slide variables can be set to any positive integer. In our work, we have 

found that a window approximately the size of the query features, such as the tandem 

repeat domains of Xist, provides good results. In general, increasing the window size 

smoothens the resulting data whereas decreasing window size gives more detail but 

increases noise. The slide is best adjusted as a function of the size of your target dataset. 



If only a couple sequences are being considered, a slide of 1 may be appropriate, but if 

the study is over the entire transcriptome or otherwise genome-wide, then larger slides 

can reduce compute time and storage space exponentially.  
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