
Classification of long noncoding RNAs by k-mer content

Jessime M. Kirk 1,2,4,*, Daniel Sprague1,3,4,*, and J. Mauro Calabrese1,2,3,4#

1 Department of Pharmacology,

2 Curriculum in Bioinformatics and Computational Biology,

3 Curriculum in Pharmacology,

4 Lineberger Comprehensive Cancer Center,

University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599.

* Co-first authors

Correspondence, jmcalabr@med.unc.edu

Abstract

K-mer based comparisons have emerged as powerful complements to BLAST-like alignment

algorithms, particularly when the sequences being compared lack direct evolutionary

relationships. In this chapter, we describe methods to compare k-mer content between groups of

long noncoding RNAs (lncRNAs), to identify communities of lncRNAs with related k-mer contents,

to identify the enrichment of protein-binding motifs in lncRNAs, and to scan for domains of related

k-mer contents in lncRNAs. Our step-by-step instructions are complemented by Python code

deposited in Github. Though our chapter focuses on lncRNAs, the methods we describe could be

applied to any set of nucleic acid sequences.

1) Introduction

 Upwards of 80% of the human genome can be transcribed into RNA. Of the total number of

transcribed nucleotides, approximately one half comprise pre-messenger RNAs (pre-mRNAs)

that will ultimately become spliced and encode for proteins in the cytoplasm. The other half

comprise long noncoding RNAs (lncRNAs), defined as RNA species that are greater than 200

nucleotides in length and have little or no potential to encode for proteins. Compared to transcripts

produced from protein-coding genes, lncRNAs are, on average, less conserved, transcribed at

lower levels, spliced less efficiently, and more likely to remain in the nucleus [1–6].

 Nevertheless, a growing number of lncRNAs have been studied experimentally, and are now

known to play important roles in health and development. Some of the most notable of these

include the lncRNA XIST, which orchestrates transcriptional silencing during X-chromosome

Inactivation [7], the lncRNAs NEAT1 and MALAT1, which play roles in nuclear organization and

have context-dependent functions in development and in cancer [8–14], and the lncRNA NORAD,

which helps to maintain genome stability by promoting DNA repair [15, 16]. LncRNAs have also

been found to play important roles in developmental transitions [17–23], in the immune system

[24–26], in the brain [27–33], and in the heart [34–37]. These identified roles, coupled with the

large number of lncRNAs that have yet to be studied experimentally, suggest that lncRNAs with

important physiological functions remain to be discovered.

Still, identifying function in lncRNAs remains a major challenge. Many lncRNAs are thought to

function as hubs that concentrate proteins, DNA, and possibly other biomolecules in particular

regions of the cell, yet the sequence characteristics that give rise to these functions and the

mechanisms through which they occur are poorly defined, even for the best studied lncRNAs [38–

42]. Moreover, relative to protein-coding genes, lncRNAs are poorly conserved, evolve rapidly,

and are prone to changes in gene architecture, limiting the extent to which traditional phylogenetic

analyses can be employed to identify the sequence features that are important for specifying their

function [43]. As an example, placental mammals express the XIST lncRNA to orchestrate gene

silencing during X-Chromosome Inactivation [7], while marsupial mammals independently

evolved their own lncRNA to orchestrate X-Chromosome Inactivation, termed Rsx. Remarkably,

XIST and Rsx share no significant similarity by standard methods of sequence alignment [44, 45].

Thus, even though Rsx and XIST presumably function through analogous mechanisms, standard

tools of sequence comparison are unable to detect the analogy. This problem extends to all

lncRNAs. The sequence patterns that specify recurring functions in lncRNAs are largely unknown

and difficult to detect computationally. Thus, to date, lncRNA functions must be determined

empirically, on a case-by-case basis.

Recently, we developed a method of sequence comparison based on the notion that different

lncRNAs likely encode similar functions through different spatial arrangements of related

sequence motifs, and that such similarities might not be detectable by traditional methods of linear

sequence alignment [46]. In our method, which we termed SEEKR (sequence evaluation through

k-mer representation), the sequences of any number of lncRNAs are evaluated by comparing the

standardized abundance of nucleotide substrings termed “k-mers” in each lncRNA, where k

specifies the length of the substring being counted, and is typically set to values of k = 4, 5, or 6.

SEEKR counts k-mers independent of their position in sequences of interest, much like the “bag

of words model” used by many language processing algorithms, in which sentences are classified

by word abundance without regards to grammar or syntax [47]. Using SEEKR, we demonstrated

that k-mer content correlates with lncRNA subcellular localization, protein-binding, and repressive

function, and that evolutionarily unrelated lncRNAs with analogous functions shared significant

levels of non-linear sequence similarity even when BLAST-like alignment algorithms could detect

none [46].

Below, we walk users through five related applications of SEEKR that we have found to be

useful. For each application, we enumerate step-by-step instructions. Where relevant, we include

code to execute specific functions in python. We have deposited standalone python code to run

the major applications of SEEKR in Github (https://github.com/CalabreseLab/seekr). For the

simplest implementation of SEEKR, we refer users to a web portal (http://seekr.org). K-mer based

classification schemes have been used in many biological contexts ([48–56] and others).

Therefore, beyond lncRNAs, the methods that we describe should prove useful in the study of

other nucleic acid sequences, such as 5' and 3' untranslated regions of mRNAs and DNA

regulatory elements.

2) Materials

2.1) Hardware Requirements

Personal computer, preferably with a multi-core processor and at least 8GB of RAM.

2.2) Software Requirements

1. Python >=3.6. The easiest way to get started with Python is by downloading the Anaconda

distribution: https://www.anaconda.com/download.

2. The python packages: numpy, pandas, networkx, python-igraph, louvain. All of these can be

installed by running $ pip install [name].

3. R, which can be installed from https://www.r-project.org/.

4. The R packages amap and ctc. amap is hosted at https://cran.r-

project.org/web/packages/amap/index.html, and ctc at

https://bioconductor.org/packages/release/bioc/html/ctc.html. Both can be installed by running:

and can be installed by running:

source("http://bioconductor.org/biocLite.R")

biocLite("amap")

biocLite("ctc")

5. Java 1.8. See this page for help installing java:

https://www.java.com/en/download/help/download_options.xml

6. Java Treeview. http://jtreeview.sourceforge.net/

7. Gephi, which can be installed from https://gephi.org/users/download/.

8. SEEKR (optional). SEEKR is hosted at pypi: https://pypi.org/project/seekr/, and can be

installed by running $ pip install seekr. SEEKR works on Mac and Linux. As of the time

of publication, there is a bug installing several dependencies of SEEKR if using Anaconda

Python on MacOS. As a workaround in macOS 10.14.x, run $

MACOSX_DEPLOYMENT_TARGET=10.14 pip install seekr. To print the documentation

associated with each SEEKR command line tool, simply type the name of the tool in the UNIX

terminal (e.g. $ seekr_download_gencode).

3) Methods

3.1) Comparing k-mer contents between a group of lncRNAs

3.1.1 Download lncRNA sequences

LncRNA sequences can be downloaded from https://www.gencodegenes.org/. For this analysis,

we'll use human v22:

ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_22/gencode.v22.lncRNA_tr

anscripts.fa.gz

and mouse v5:

ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M5/gencode.vM5.lncRNA_t

ranscripts.fa.gz. Unzip these files to produce gencode.v22.lncRNA_transcripts.fa and

gencode.vM5.lncRNA_transcripts.fa.gz. The following pipeline will be demonstrated using just

the gencode.v22.lncRNA_transcripts.fa file. Mouse, or any other fasta file, can be substituted

instead.

Downloading and unzipping can be done manually. Alternatively, if SEEKR is installed locally,

you can also download the files from the command line. Use “lncRNA” to specify the biotype of

transcripts file, and the “--release" flag to indicate you want a particular version of the fasta file:

$ seekr_download_gencode lncRNA -r 22

3.1.2 Select 01 isoform

To avoid bias that may be introduced by counting k-mers across multiple isoforms of the same

transcript, we typically only select transcripts ending in 01, which in prior versions of GENCODE,

represented the canonical isoform of a gene product. Using this filter, each genomic locus is only

represented once.

fasta_path = 'v22_lncRNA.fa' (see note 1)

with open(fasta_path) as infasta:

 data = [l.strip() for l in infasta]

 headers = data[::2]

 seqs = data[1::2]

fasta01_path = 'v22-01.fa'

with open(fasta01_path, 'w') as outfasta:

 for header, seq in zip(headers, seqs):

 common_name = header.split('|')[4]

 if common_name.endswith('01'): (see note 2)

 outfasta.write(header+'\n')

 outfasta.write(seq+'\n')

To accomplish the same using the command line tool, pass seekr_canonical_gencode the

name of the GENCODE fasta file and a path to the newly filtered fasta file:

$ seekr_canonical_gencode v22_lncRNA.fa v22-01.fa

3.1.3 Count k-mers

Next, we define a 2D matrix where each row represents one transcript, each column represents

a k-mer, and each element is a normalized and standardized count of how many times a k-mer is

found in a transcript. A single row of the matrix, then, defines a “k-mer profile” for a given lncRNA.

import pickle

import numpy as np

import pandas as pd

from collections import defaultdict

from itertools import product

Read fasta file

fasta_path = 'v22-01.fa'

with open(fasta_path) as infasta:

 data = [l.strip() for l in infasta]

 headers = data[::2]

 seqs = data[1::2]

Initialize data

k=6

kmers = [''.join(i) for i in product('AGTC', repeat=k)]

k_map = dict(zip(kmers, range(4**k)))

counts = np.zeros([len(seqs), 4**k], dtype=np.float32)

Do counting

for i, seq in enumerate(seqs):

 row = counts[i]

 count_dict = defaultdict(int) (see note 3)

 length = len(seq)

 increment = 1000/length

 for c in range(length-k+1): (see note 4)

 kmer = seq[c:c+k]

 count_dict[kmer] += increment

 for kmer, n in count_dict.items():

 if kmer in k_map: (see note 5)

 row[k_map[kmer]] = n

Normalize

counts -= np.mean(counts, axis=0)

counts /= np.std(counts, axis=0)

counts += abs(counts.min()) + 1 (see note 6)

counts = np.log2(counts)

Save csv file

out_path = 'v22-6mers.csv'

seen = set()(see note 7)

names = []

for h in headers:

 name = h.split('|')[4]

 if name in seen:

 name += 'B'

 seen.add(name)

 names.append(name)

pickle.dump(names, open('v22_names-B.pkl', 'wb'))

df = pd.DataFrame(counts, names, kmers)

df.to_csv(out_path, float_format='%.4f')

Using the command line tool:

$ seekr_kmer_counts v22-01.fa -o v22_6mers.csv

3.2) Hierarchical clustering of lncRNAs by k-mer content

3.2.1 Cluster with amap

The visualization tool Java Treeview allows for interactive exploration of large hierarchical

clusters. Treeview parses clusters defined by a set of three plaintext files, which describe the

structure of row and column clusters: .gtr, .atr, and .cdt. These files can be conveniently produced

by the R packages `amap` and `ctc`, which parse a .csv file such as v22_6mers.csv. The R script

`treeview_cluster.r` will create the Treeview files:

make_treeview <- function(csv, out_gtr, out_atr, out_cdt){

 library(amap)

 library(ctc)

 kmers <- read.csv(csv, header=TRUE, row.names=1)

 kmers <- round(scale(kmers, scale=FALSE), 6)

 # Generate distance matrix using pearson distance

 dist_mat <- Dist(kmers, method="correlation", nbproc=4)

 dist_mat_trans <- Dist(t(kmers), method="correlation", nbproc=4)

 # Clustering using average agglomeration method

 clust_row <- hclust(dist_mat,method="average")

 clust_col <- hclust(dist_mat_trans,method="average")

 # Exporting the gtr, atr and cdt files

 r2gtr(clust_row,file=out_gtr, distance=clust_row$dist.method,

dec='.', digits=5)

 r2atr(clust_col,file=out_atr, distance=clust_col$dist.method,

dec='.', digits=5)

 r2cdt(clust_row, clust_col, kmers, labels=FALSE, description=FALSE,

file=out_cdt, dec='.')

}

args <- commandArgs(trailingOnly = TRUE)

do.call(make_treeview, as.list(args))

While this script is not part of the seekr module, it can be called from the command line using:

$ Rscript treeview_cluster.r v22_6mers.csv v22_6mers.gtr v22_6mers.atr

v22_6mers.cdt

3.2.2 Visualize in java treeview

Launch Treeview, and give Java access to plenty of memory. If insufficient memory is allocated,

Treeview will not be able to open the .cdt file. Starting Treeview with 14GB of memory can be

done by:

$ java -Xmx14000m -jar ~/Downloads/Setups/TreeView-1.1.6r4-

bin/TreeView.jar

Substitute the correct path to your TreeView.jar file. Once started, open v22-6mers.cdt via "File"

-> "Open". After the file is loaded, change the visualization settings by: "Settings" -> "Pixel

Settings...". Find the "Global" section of the pop-up window. Click "Fill" for both "X" and "Y". In the

"Contrast" section, set "Value" to 1. In the "Colors" section click "YellowBlue". Close the pop-up

window.

The image can be saved by "Export" -> "Save Thumbnail Image" -> "Save".

An ordered list of all transcript names can be exported as well. To do so, you must first select all

transcripts. The easiest way to do this is to click on the far left of the dendrogram, so that a portion

of the transcripts are highlighted in red. Hold down the up-arrow until all transcripts are highlighted

in red. Then click "Export" -> "Save List" -> "Save".

3.3) Identifying communities of lncRNAs with related k-mer contents

It takes several steps to convert k-mer profiles into the form needed for identifying communities.

We first build an adjacency matrix, describing all pairwise relationships between all lncRNAs, then

use the matrix to build a network of lncRNAs. Finally, we can use a network algorithm to assign

a community label to each lncRNA.

3.3.1 Build adjacency matrix

First, we need to build an adjacency matrix. This matrix describes how similar each lncRNA is to

all other lncRNAs, as measured by their Pearson’s r-values.

import pandas as pd

import numpy as np

counts = 'v22_6mers.csv'

counts = pd.read_csv(counts, index_col=0)

adjacency = np.corrcoef(counts.values)

adjacency = pd.DataFrame(adjacency, counts.index, counts.index)

adj_path = 'v22_adj.csv'

adjacency.to_csv(adj_path, float_format='%.4f')

To calculate our adjacency matrix, we want to compare our k-mer counts file against itself. The

seekr command line tool is capable of comparing two separate counts files, so in this case, we

need to pass our counts file twice:

$ seekr_pearson v22_6mers.csv v22_6mers.csv -o v22_adj.csv (see note

8)

3.3.2 Sparsify the matrix

To decrease the runtime of community calculation, we can reduce the number of edges in the

network, by sparsifying the adjacency matrix by thresholding below a limit. That is, if the Pearson's

r-value between two transcripts is less than the limit, we set that element of the matrix to 0, which

removes that edge from our network. However, there is no single best threshold value; it depends

heavily on the specific experiment and factors such as the k-mer size used. For example, smaller

k-mer sizes will likely need higher thresholds. Therefore, it may be worthwhile to test multiple

thresholds. One possible guideline is the mean and standard deviation of the r-values in the

adjacency matrix. Two standard deviations above the mean (i.e. the 95th percentile in a normal

distribution) is one viable threshold, and easy to compute. In our original publication of SEEKR,

we used 0.13 as a threshold, which is what we will use here, but we will also demonstrate how

one would calculate a reasonable threshold de novo:

import pandas as pd

import numpy as np

adj = 'v22_adj.csv'

adjacency = pd.read_csv(adj, index_col=0)

print(adjacency.values.mean() + 2*adjacency.values.std())

limit = .13 (see note 9)

np.fill_diagonal(adjacency.values, 0) (see note 10)

adjacency[adjacency < limit] = 0

new_adj = 'v22_adj_p13.csv'

adjacency.to_csv(new_adj, float_format='%.4f')

In addition to calculating the mean and standard deviation, you can quickly visualize the

adjacency matrix from the command line. This will create a pdf file that contains a graph of the

distribution of all elements in the adjacency matrix and markings denoting the mean of the

distribution as well as one and two standard deviations above the mean. Empirically, we have

found that a Pearson’s r value of two standard deviations above the mean provides an intuitive

threshold that can be used to sparsify any adjacency matrix:

$ seekr_visualize_distro v22_adj.csv v22_adj.pdf

3.3.3 Convert adjacency matrix to network and find communities

Once the sparse adjacency matrix has been made, communities can be called with the Louvain

algorithm. To use the Louvain algorithm, the adjacency matrix needs to be converted to a network.

In this data structure, each lncRNA is represented as a “node” and each non-zero element of the

adjacency matrix represents an “edge” between two nodes, describing their similarity. The

Louvain algorithm attempts to find communities of nodes having significantly more edges between

the nodes within a given community than edges connecting nodes between different communities.

Finally, we label each node with the name of the transcript and the community it's found in before

saving the graph for visualization. In addition to saving the full graph, we will also produce a two-

column csv file where the first column is the name of the lncRNA and the second is the community

to which the lncRNA belongs.

import numpy as np

import networkx

import igraph

import louvain

adj = 'v22_adj_13.csv'

adjacency = pd.read_csv(adj, index_col=0)

graph = networkx. from_pandas_dataframe(adjacency)

adjacency = None (see note 11)

Save subgraph

subgraphs = list(networkx.connected_component_subgraphs(graph))

graph_sizes = [sub.size() for sub in subgraphs]

main_sub = subgraphs[graph_sizes.index(max(graph_sizes))]

gml_path = 'v22_sub.gml'

networkx.write_gml(main_sub, gml_path) (see note 12)

Find communities with Louvain

gamma = 1 (see note 13)

ig_graph = igraph.Graph.Read_GML(gml_path)

partition = louvain.find_partition(

 ig_graph, louvain.RBConfigurationVertexPartition,

 weights='weight', resolution_parameter=gamma)

n_comms = 5 (see note 14)

zipped = zip(main_sub.nodes(), partition.membership)

name2group = {k:v if v <= n_comms-1 else n_comms for k, v in zipped}

networkx.set_node_attributes(

 main_sub, name='Group', values=name2group)

networkx.write_gml(main_sub, gml_path)

Save lncRNA communities to csv

with open('communities.csv') as out_file:

 for lncRNA in graph.nodes():

 group = name2group.get(lncRNA, n_comms-1)

 out_file.write(f'{lncRNA},{group}\n')

Again, the thresholding value is experiment specific. For that reason, it is a required argument for

the command line script. In the instance below, we also save the full gml file, with the “-g" flag,

and the two-column csv file listing lncRNAs and communities, with the “-c" flag:

$ seekr_graph v22_adj.csv 0.13 -g v22_sub.gml -c v22_comms.csv

3.3.4 Visualize in Gephi

Gephi is open-source software that is useful for visualizing lncRNA community graphs. On launch,

Gephi will provide you with a "Welcome" pop-up window. In the "New Project" section, click "Open

Graph File". Select `v22_sub.gml`. If loaded correctly, you will receive an "Import report" listing

the number of nodes and edges as well as other graph details. Click "OK". In the center of the

main application window, you should see a small black circle. This is the default layout and

coloring of the graph. Next, we'll color and properly layout the nodes. In the top left of the window,

there will be an "Appearance" section. Click "Nodes" -> "Partition" -> "Choose an attribute" ->

"Group" -> "Apply". After a few seconds, the nodes of the graph should be colored by group. On

the bottom left, there is a section called "Layout". Click "Choose a layout" -> "Yifan Hu" -> "Run".

Running the layout will take time. Progress can be tracked in the bottom right. Once finished, save

the image by clicking: "File" -> "Export" -> "SVG/PDF/PNG file" -> "Options". Set "Width" and

"Height" to 4096. Click "OK". Name your file and click "Okay" again. Saving the image will also

some take time.

3.4) SEEKR Python

The command line tools are a convenient way to use SEEKR. However, to gain additional

flexibility and performance, one can also consider using SEEKR as a Python module. The code

below demonstrates the same pipeline as above (from downloading a fasta file from GENCODE

to producing a csv file of lncRNA communities), but runs >10x faster than the command line tools:

import numpy as np

import pandas as pd

from seekr import fasta, kmer_counts, graph

downloader = fasta.Downloader()

downloader.get_gencode(biotype='lncRNA', release='22')

fasta_path = 'v22_lncRNA.fa'

fasta01_path = 'v22-01.fa'

maker = fasta.Maker(fasta_path, fasta01_path)

maker.filter1()

names = fasta.Maker(fasta01_path).names

counter = kmer_counts.BasicCounter(fasta01_path, log2=False)

counter.get_counts()

adj = pd.DataFrame(np.corrcoef(counter.counts), names, names)

comms_path = 'comms.csv'

gm = graph.Maker(adj, csv_path=comms_path, threshold=0.13,

leiden=False)

gm.make_gml_csv_files()

3.5) Scaling k-mer profiles by protein-binding motifs (Positional Weight Matrices)

One of the underlying assumptions of SEEKR is that lncRNAs derive function from the proteins

that they bind. Therefore, a logical step is to utilize the k-mer profile of a given sequence to predict

proteins that may bind that sequence. To do this, one can scale k-mer profiles by position weight

matrix probabilities (PWMs). We outline this methodology below.

Our code is written to input PWMs in the format provided by the CisBP-RNA database [57].

To download, navigate to http://cisbp-rna.ccbr.utoronto.ca/bulk.php. In ‘By Species’, select

Homo_sapiens, then click ‘Download Species Archive’ and in the new page click ‘Download’.

However, any PWM can be used if formatted correctly. Individual PWMs must be tab separated

and saved in a .txt file. Each PWM must contain a header row with entries [Pos, A,C,G,U]. The

‘Pos’ column contains integers representing the position within the PWM. Each row must sum to

1, excluding the index column, thereby representing the probability of finding each nucleotide at

each position within the motif.

This code iterates through the PWM files in pwm_directory and calculates the probability

of observing all k-mers within each motif. The probability of observing a k-mer in a motif is

calculated as the independent probability of observing each nucleotide of the k-mer at the

corresponding position within the motif. The weight is then the sum of possible frames that a k-

mer could occur in, for example a 5-mer could fall in two different frames in a 6bp motif. Prior to

running the code below, users need to derive k-mer counts in the lncRNAs of interest, as specified

in Section 3.1.

import pandas as pd

import numpy as np

from itertools import product

from pathlib import Path

path to PWMs

pwm_directory = 'cisbp_pwms/pwms_all_motifs/'

pwm_directory = Path(pwm_directory)

k-mer counts are produced by seekr_kmer_counts (See section 3.1)

counts_path = 'v22_6mers.csv'

k = 5 (see note 15)

kmers = [''.join(p) for p in product('AGTC', repeat=k)] (see note 16)

z_scores = pd.read_csv(counts_path, index_col=0)

score_dict = {}

for pwm_path in pwm_directory.glob('*.txt'):

 try:

 pwm = pd.read_csv(pwm_path, sep='\t')

 except pd.errors.EmptyDataError:

 print(f'The motif file {pwm_path} is empty. Skipping.')

 continue

 pwm.drop('Pos', axis=1, inplace=True)

 pwm = pwm.rename(columns={'U': 'T'}).to_dict()

 kmer2weight = dict(zip(kmers, np.zeros(4 ** k)))

 motif_len = len(pwm['A']).

 if motif_len < k: (see note 17)

 kmers_within_kmer = [([kmer[i:i+4] for i in range(k-4+1)],

kmer) for kmer in kmers]

 n_kmers = motif_len - 4 + 1

 for sub_kmers, kmer in kmers_within_kmer:

 for sub_kmer in sub_kmers:

 for frame in range(n_kmers):

 weight = 1

 for pos, nucleotide in enumerate(sub_kmer):

 weight *= pwm[nucleotide][pos + frame]

 kmer2weight[kmer] += weight

 else:

 for kmer in kmers:

 n_kmers = motif_len - k + 1

 for frame in range(n_kmers):

 weight = 1

 for pos, nucleotide in enumerate(kmer):

 weight *= pwm[nucleotide][pos+frame]

 kmer2weight[kmer] += weight

 sorted_weights = np.array([kmer2weight[k] for k in

z_scores.columns])

 weighted_z_scores = z_scores.values.copy() * sorted_weights

 scores_sums = weighted_z_scores.sum(axis=1)

 score_dict[pwm_path.name] = scores_sums

#save output

out_df = pd.DataFrame.from_dict(score_dict, orient='index',

columns=z_scores.index)

out_path = 'pwm_weighted_SEEKR.csv'

out_df.to_csv(out_path)

3.5.1 Using the command line tool (specify k-mer length if not using k = 5):

$ seekr_pwm cisbp_pwms/pwms_all_motifs v22_6mers.csv -k 6 –o

pwm_weighted_SEEKR.csv

3.6) Scanning lncRNAs for domains of related k-mer contents

This program is designed to scan a set of fasta sequences, or ‘targets’, for regions of high

correlation to a set of sequences that we define as the ‘query’ sequences. Typical query

sequences might represent functional domains in lncRNAs of interest. Targets are broken up into

sliding windows with length and slide designated by the user. Correlations from each tile are then

compared against a ‘reference’ set of sequences that are specified by the user.

This program iterates through k-mer counting three times, which we show explicitly below for

completeness. The first iteration calculates the k-mer profile of a query sequence, the second

iteration calculates the k-mer profiles for each tile in the target sequence, and the final iteration

calculates the k-mer profile for each transcript in the reference set of sequences and correlates

them with the query k-mer profiles. This last calculation yields a distribution of Pearon’s correlation

values from which we can derive the ranks of our targets relative to the queries.

import pandas as pd

import numpy as np

from itertools import product

from collections import defaultdict

from scipy.stats import pearsonr

from scipy.stats import percentileofscore

from seekr.kmer_counts import BasicCounter

from seekr.fasta_reader import Reader

Path to a query of interest (in this example, the sequence of repeat

B in the lncRNA Xist)

query_path = 'mm10_xist_repeatB.fa'

This performs standard SEEKR for the query

query = Reader(query_path).get_seqs()[0]

window = 1000 (see note 18)

slide = 100

k = 5

kmers = [''.join(p) for p in product('ATCG', repeat=k)]

k_map = dict(zip(kmers, range(4**k)))

mean_path, std_path = 'mean.npy', 'std.npy'

mean = np.load(mean_path)

std = np.load(std_path)

query_counter = BasicCounter(k=k, mean=mean, std=std)

query_counter.seqs = [query]

query_counter.get_counts()

query_counts = query_counter.counts

q_vs_t_rvals = []

target_path = 'mm10_kcnq1ot1.fa'

target = Reader(target_path).get_seqs()[0]

tiles = []

for i in range(0, len(target), slide):

 end = i + window

 tiles.append(target[i: end])

tiles[-1] += target[end:]

tile_counter = BasicCounter(k=k, mean=mean, std=std)

tile_counter.seqs = tiles

tile_counter.get_counts()

q_vs_t_rvals = np.array([pearsonr(query_counts[0],

tile_counter.counts[i])[0] for i in range(len(tiles))])

q_vs_ref_rvals = []

ref_path = 'v22-01.fa'

ref = Reader(ref_path).get_seqs()

ref_counter = BasicCounter(k=k, mean=mean, std=std)

ref_counter.seqs = ref

ref_counter.get_counts()

ref_counts = ref_counter.counts

q_vs_ref_rvals = np.array([pearsonr(query_counts[0], ref_counts[i])[0]

for i in range(len(ref))])

ranks = []

for tile_corr in q_vs_t_rvals:

 ranks.append(percentileofscore(q_vs_ref_rvals, tile_corr,

kind='rank'))

query_target_df = pd.DataFrame(q_vs_t_rvals)

query_target_df_out = 'query_target_pearson.csv'

query_target_df.to_csv(query_target_df_out)

ranks_df = pd.DataFrame(ranks)

ranks_df_path = 'ranks.csv'

ranks_df.to_csv(ranks_df_path)

3.6.1 Command line usage

This tool requires several pieces of data. 1) A fasta file containing one or more query sequences,

2) A second fasta file containing one or more target sequences which will be tiled into domains,

3) The mean and standard deviation vectors for normalization (e.g. appropriate output from

`seekr_norm_vectors`). You can then select the locations for one or both of the possible output

files with the ‘-r’ and the ‘-p' flags. The ‘-r’ flag prints a matrix of Pearson’s r values describing the

similarity between each query and each tile in each target, and the ‘-p’ flag prints a corresponding

matrix of the percentile rankings of the Pearson’s r values relative to a reference set of sequences.

If you use the ‘-p’ flag you must also use the ‘-rp’ flag, which specifies the reference set of

sequences to be used in percentile calculations; for example, ‘v22-01.fa’. Also, ensure that the ‘-

k' flags passed to `seekr_norm_vectors` and `seekr_domain_pearson` are the same:

$ seekr_norm_vectors v22-01.fa –k 5

$ seekr_domain_pearson mm10_xist_repeatB.fa mm10_kcnq1ot1.fa mean.npy

std.npy -rp v22-01.fa –k 5 –r r_values.csv –p percentiles.csv

4) Notes

1. If you manually download this file from GENCODE’s website, it will be called

“gencode.v22.lncRNA_transcripts.fa”.

2. In human, there are a few genomic regions where the canonical isoform is not -001, but -

*01 instead, usually -201. It is worth manually examining the GENCODE annotations to

ensure that your lncRNA spliceform of interest is included in your analyses.

3. While it is possible to directly increment the numpy array for each k-mer, randomly

accessing the array is slow when done billions of times. Instead, a dictionary is used to

collect the counts for a single transcript. That way, each element of the array can be

accessed only once.

4. Because we want to count overlapping k-mers we cannot use Python's built-in `count`

method, and need to manually iterate over the strings ourselves.

5. k-mers that contain non-ACGT nucleotides (eg. ATCGGN) are skipped.

6. In our original publication describing SEEKR, log normalization was not used. In a limited

number of tests, we have found that log normalizing k-mer counts prior to performing

Pearson’s correlation mildly improves our ability to detect biological meaningful trends. In

general, log normalization is an appropriate way to reduce skew in data, and k-mer counts,

especially in repetitive regions of RNA, are often skewed. If log2 normalization is not

desired, pass the `-nl` flag to `seekr_kmer_counts`.

7. GENCODE transcript names are not necessarily unique. To be able to use names as the

index of an R DataFrame, 'B' is appended to transcript names that have already occurred.

8. This array is approximately 250 million elements (16,000 by 16,000 r-values). For a

significant efficiency increase (~50x speed, 2x space), consider using the binary flags `--

binary_input` and/or `--binary_output` when running seekr_pearson. Also note that

usage of these flags may require additional adjustment to flags in other stages of the

SEEKR pipeline.

9. The 0.13 Pearson value as a threshold was chosen as a balance between computational

efficiency and information retention. In GENCODE v22, the Pearson’s value of 0.13 is

approximately two standard deviations above the mean similarity between all pairwise

lncRNA comparisons. Overall, we found little to no difference in community definition,

correlation with lncRNA localization, or ability to predict protein-binding patterns over a

range of limit values.

10. The diagonal of the matrix contains all ‘1’ values, since the k-mer profile of a transcript

versus itself is a perfect correlation. These edges are not useful for defining communities,

so we remove them.

11. This is just done to clear some memory.

12. Writing out to disk at this point is simply used as a way to convert between a networkx

graph and an igraph graph. The igraph version is needed for running louvain. There are

likely better ways of doing this.

13. Gamma is the resolution parameter for the Louvain algorithm, and is used to tune how

many communities are found. Gamma must be greater than 0, and the larger the value,

the more communities will be created; consequentially, community sizes are smaller at

larger gamma values. We chose to stay with the default resolution parameter, 1, which

was supported by CHAMP [58]. CHAMP is an algorithm which can help provide context

for which values of gamma might be most appropriate for a given graph.

14. Choosing the number of communities can be difficult. We used an estimate based on the

hierarchical heatmap, in combination with the size of the communities. In our original

publication of SEEKR, community 6 was significantly smaller than community 5 (relative

to the ratio between, community 5 and 4, or 4 and 3, etc.; [46]). n_communities is defined

here so we can cap the number of communities found by the Louvain algorithm before

adding values to the main subgraph below.

15. k = 5 is a reasonable default because it tends to strike a balance between decreasing

sparsity in k-mer profiles while still retaining good discrimination between queries and

targets.

16. Nucleotide entries in this list must be in exactly the same order as used in Section 3.1,

‘AGTC’.

17. This loop is designed to find all 4-mers within the larger k-mer if the value of k is larger

than the length of the motif. For example, the 5-mer ATCGT does not exist within a 4 base

pair motif, but two 4-mers within the 5-mer, ATCG and TCGT can fit within a 4 base pair

motif. This loop calculates the probabilities of observing the 4-mers separately and then

sums the result. No motif in CisBP-RNA database is < 4 base pairs, hence the default of

k = 4.

18. The window and slide variables can be set to any positive integer. In our work, we have

found that a window approximately the size of the query features, such as the tandem

repeat domains of Xist, provides good results. In general, increasing the window size

smoothens the resulting data whereas decreasing window size gives more detail but

increases noise. The slide is best adjusted as a function of the size of your target dataset.

If only a couple sequences are being considered, a slide of 1 may be appropriate, but if

the study is over the entire transcriptome or otherwise genome-wide, then larger slides

can reduce compute time and storage space exponentially.

References

1. Cabili M, Trapnell C, Goff L, et al (2011) Integrative annotation of human large intergenic

noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–

1927. doi:10.1101/gad.17446611

2. Cabili MN, Dunagin MC, McClanahan PD, et al (2015) Localization and abundance analysis

of human lncRNAs at single-cell and single-molecule resolution. Genome Biol 16:20.

doi:10.1186/s13059-015-0586-4

3. Derrien T, Johnson R, Bussotti G, et al (2012) The GENCODE v7 catalog of human long

noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome

Res 22:1775–1789. doi:10.1101/gr.132159.111

4. Melé M, Mattioli K, Mallard W, et al (2017) Chromatin environment, transcriptional

regulation, and splicing distinguish lincRNAs and mRNAs. Genome Res 27:27–37.

doi:10.1101/gr.214205.116

5. Mukherjee N, Calviello L, Hirsekorn A, et al (2017) Integrative classification of human

coding and noncoding genes through RNA metabolism profiles. Nat Struct Mol Biol

24:86–96. doi:10.1038/nsmb.3325

6. Iyer MK, Niknafs YS, Malik R, et al (2015) The landscape of long noncoding RNAs in the

human transcriptome. Nat Genet 24:86–96. doi:10.1038/ng.3192

7. Sahakyan A, Yang Y, Plath K (2018) The Role of Xist in X-Chromosome Dosage

Compensation. Trends Cell Biol 28:999–1013. doi:10.1016/J.TCB.2018.05.005

8. West JA, Davis CP, Sunwoo H, et al (2014) The Long Noncoding RNAs NEAT1 and MALAT1

Bind Active Chromatin Sites. Mol Cell 55:791–802. doi:10.1016/j.molcel.2014.07.012

9. Arun G, Diermeier S, Akerman M, et al (2016) Differentiation of mammary tumors and

reduction in metastasis upon Malat1 lncRNA loss. Genes Dev 30:34–51.

doi:10.1101/gad.270959.115

10. Chakravarty D, Sboner A, Nair SS, et al (2014) The oestrogen receptor alpha-regulated

lncRNA NEAT1 is a critical modulator of prostate cancer. Nat Commun 20:1844–1849.

doi:10.1038/ncomms6383

11. Gutschner T, Hämmerle M, Eißmann M, et al (2013) The noncoding RNA MALAT1 is a

critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res 73:1180–

1189. doi:10.1158/0008-5472.CAN-12-2850

12. Zhang B, Arun G, Mao YS, et al (2012) The lncRNA malat1 is dispensable for mouse

development but its transcription plays a cis-regulatory role in the adult. Cell Rep 2:111–

123. doi:10.1016/j.celrep.2012.06.003

13. Nakagawa S, Shimada M, Yanaka K, et al (2014) The lncRNA Neat1 is required for corpus

luteum formation and the establishment of pregnancy in a subpopulation of mice.

Development 141:4618–4627. doi:10.1242/dev.110544

14. Standaert L, Adriaens C, Radaelli E, et al (2014) The long noncoding RNA Neat1 is

required for mammary gland development and lactation. RNA 20:1844–1489.

doi:10.1261/rna.047332.114

15. Lee S, Kopp F, Chang TC, et al (2016) Noncoding RNA NORAD Regulates Genomic Stability

by Sequestering PUMILIO Proteins. Cell 164:69–80. doi:10.1016/j.cell.2015.12.017

16. Munschauer M, Nguyen CT, Sirokman K, et al (2018) The NORAD lncRNA assembles a

topoisomerase complex critical for genome stability. Nature 561:132–6.

doi:10.1038/s41586-018-0453-z

17. Klattenhoff CA, Scheuermann JC, Surface LE, et al (2013) Braveheart, a long noncoding

RNA required for cardiovascular lineage commitment. Cell 152:570–583.

doi:10.1016/j.cell.2013.01.003

18. Lin N, Chang KY, Li Z, et al (2014) An evolutionarily conserved long noncoding RNA TUNA

controls pluripotency and neural lineage commitment. Mol Cell 53:1005–1024.

doi:10.1016/j.molcel.2014.01.021

19. Luo S, Lu JY, Liu L, et al (2016) Divergent lncRNAs regulate gene expression and lineage

differentiation in pluripotent cells. Cell Stem Cell 18:637–652.

doi:10.1016/j.stem.2016.01.024

20. Ng SY, Johnson R, Stanton LW (2012) Human long non-coding RNAs promote

pluripotency and neuronal differentiation by association with chromatin modifiers and

transcription factors. EMBO J 31:522–533. doi:10.1038/emboj.2011.459

21. Mohamed JS, Gaughwin PM, Lim B, et al (2010) Conserved long noncoding RNAs

transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse

embryonic stem cells. RNA 16:324–337. doi:10.1261/rna.1441510

22. Lai KMV, Gong G, Atanasio A, et al (2015) Diverse phenotypes and specific transcription

patterns in twenty mouse lines with ablated lincRNAs. PLoS One 10:e0125522.

doi:10.1371/journal.pone.0125522

23. Swiezewski S, Liu F, Magusin A, Dean C (2009) Cold-induced silencing by long antisense

transcripts of an Arabidopsis Polycomb target. Nature 462:799–802.

doi:10.1038/nature08618

24. Carpenter S, Aiello D, Atianand MK, et al (2013) A long noncoding RNA mediates both

activation and repression of immune response genes. Science (80-) 341:789–792.

doi:10.1126/science.1240925

25. Elling R, Robinson EK, Shapleigh B, et al (2018) Genetic Models Reveal cis and trans

Immune-Regulatory Activities for lincRNA-Cox2. Cell Rep 25:1511–1524.

doi:10.1016/j.celrep.2018.10.027

26. Kotzin JJ, Spencer SP, McCright SJ, et al (2016) The long non-coding RNA Morrbid

regulates Bim and short-lived myeloid cell lifespan. Nature 537:239–243.

doi:10.1038/nature19346

27. Barry G, Briggs JA, Vanichkina DP, et al (2013) The long non-coding RNA Gomafu is

acutely regulated in response to neuronal activation and involved in schizophrenia-

associated alternative splicing. Mol Psychiatry 19:486

28. Goff LA, Groff AF, Sauvageau M, et al (2015) Spatiotemporal expression and

transcriptional perturbations by long noncoding RNAs in the mouse brain. Proc Natl Acad

Sci 112:6855–6862. doi:10.1073/pnas.1411263112

29. Mercer TR, Dinger ME, Sunkin SM, et al (2008) Specific expression of long noncoding

RNAs in the mouse brain. Proc Natl Acad Sci U S A 105:716–721.

doi:10.1073/pnas.0706729105

30. Powell WT, Coulson RL, Crary FK, et al (2013) A Prader-Willi locus lncRNA cloud

modulates diurnal genes and energy expenditure. Hum Mol Genet 22:4318–4328.

doi:10.1093/hmg/ddt281

31. Raveendra BL, Swarnkar S, Avchalumov Y, et al (2018) Long noncoding RNA GM12371

acts as a transcriptional regulator of synapse function. Proc Natl Acad Sci 115:10197–

10205. doi:10.1073/pnas.1722587115

32. Sauvageau M, Goff LA, Lodato S, et al (2013) Multiple knockout mouse models reveal

lincRNAs are required for life and brain development. Elife 2013:e01749.

doi:10.7554/elife.01749

33. Sone M, Hayashi T, Tarui H, et al (2007) The mRNA-like noncoding RNA Gomafu

constitutes a novel nuclear domain in a subset of neurons. J Cell Sci 120:2498–2506.

doi:10.1242/jcs.009357

34. Grote P, Wittler L, Hendrix D, et al (2013) The Tissue-Specific lncRNA Fendrr Is an

Essential Regulator of Heart and Body Wall Development in the Mouse. Dev Cell 24:206–

214. doi:10.1016/j.devcel.2012.12.012

35. Han P, Li W, Lin CH, et al (2014) A long noncoding RNA protects the heart from

pathological hypertrophy. Nature 514:102–106. doi:10.1038/nature13596

36. Matkovich SJ, Edwards JR, Grossenheider TC, et al (2014) Epigenetic coordination of

embryonic heart transcription by dynamically regulated long noncoding RNAs. Proc Natl

Acad Sci 111:12264–12269. doi:10.1073/pnas.1410622111

37. Wang K, Liu CY, Zhou LY, et al (2015) APF lncRNA regulates autophagy and myocardial

infarction by targeting miR-188-3p. Nat Commun 2015:6779. doi:10.1038/ncomms7779

38. Kopp F, Mendell JT (2018) Functional Classification and Experimental Dissection of Long

Noncoding RNAs. Cell 393–407

39. Geisler S, Coller J (2013) RNA in unexpected places: long non-coding RNA functions in

diverse cellular contexts. Nat Rev Mol Cell Biol 14:699–712. doi:10.1038/nrm3679

40. Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs.

Nature 482:339–346. doi:10.1038/nature10887

41. Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem

81:145–166. doi:10.1146/annurev-biochem-051410-092902

42. Kornienko AE, Guenzl PM, Barlow DP, Pauler FM (2013) Gene regulation by the act of

long non-coding RNA transcription. BMC Biol 11:59. doi:10.1186/1741-7007-11-59

43. Hezroni H, Koppstein D, Schwartz MG, et al (2015) Principles of long noncoding RNA

evolution derived from direct comparison of transcriptomes in 17 species. Cell Rep

11:1110–1122. doi:10.1016/j.celrep.2015.04.023

44. Grant J, Mahadevaiah SK, Khil P, et al (2012) Rsx is a metatherian RNA with Xist-like

properties in X-chromosome inactivation. Nature 487:254–258.

doi:10.1038/nature11171

45. Johnson RN, O’Meally D, Chen Z, et al (2018) Adaptation and conservation insights from

the koala genome. Nat Genet 50:1102–1111. doi:10.1038/s41588-018-0153-5

46. Kirk JM, Kim SO, Inoue K, et al (2018) Functional classification of long non-coding RNAs by

k-mer content. Nat Genet 50:1474–1482. doi:10.1038/s41588-018-0207-8

47. McTear M, Callejas Z, Griol D (2016) The Conversational Interface

48. Blaisdell BE (1989) Effectiveness of measures requiring and not requiring prior sequence

alignment for estimating the dissimilarity of natural sequences. J Mol Evol 29:526–537

49. Burge C, Campbell AM, Karlin S (1992) Over- and under-representation of short

oligonucleotides in DNA sequences. Proc Natl Acad Sci U S A 89:1358–1362.

doi:10.1073/pnas.89.4.1358

50. Kari L, Hill KA, Sayem AS, et al (2015) Mapping the space of genomic signatures. PLoS One

10:e0119815. doi:10.1371/journal.pone.0119815

51. Lees JA, Vehkala M, Valimaki N, et al (2016) Sequence element enrichment analysis to

determine the genetic basis of bacterial phenotypes. Nat Commun 7:12797.

doi:10.1038/ncomms12797

52. Pandey P, Bender MA, Johnson R, et al (2018) Squeakr: an exact and approximate k-mer

counting system. Bioinformatics 34:568–575. doi:10.1093/bioinformatics/btx636

53. Blanchette M, Tompa M (2002) Discovery of regulatory elements by a computational

method for phylogenetic footprinting. Genome Res. 12:739–748

54. Dubinkina VB, Ischenko DS, Ulyantsev VI, et al (2016) Assessment of k-mer spectrum

applicability for metagenomic dissimilarity analysis. BMC Bioinformatics 17:38.

doi:10.1186/s12859-015-0875-7

55. Friedman RC, Farh KK-H, Burge CB, Bartel DP (2009) Most mammalian mRNAs are

conserved targets of microRNAs. Genome Res 19:92–105. doi:10.1101/gr.082701.108

56. Solis-Reyes S, Avino M, Poon A, Kari L (2018) An open-source k-mer based machine

learning tool for fast and accurate subtyping of HIV-1 genomes. PLoS One 13:e0206409.

doi:10.1371/journal.pone.0206409

57. Ray D, Kazan H, Cook KB, et al (2013) A compendium of RNA-binding motifs for decoding

gene regulation. Nature 499:172–177. doi:10.1038/nature12311

58. Weir WH, Emmons S, Gibson R, et al (2017) Post-Processing Partitions to Identify

Domains of Modularity Optimization. Algorithms 10:. doi:10.3390/a10030093

