In [1]:
import pydeck as pdk
import pandas as pd

Plotting lights at night

NASA has collected global light emission data for over 30 years. The data set is a deeply fascinating one and has been used for news stories on the Syrian Civil War [1], North Korea [2], and economic growth [3].

In this notebook, we'll use a deck.gl HeatmapLayer to visualize some of the changes at different points in time.

Getting the data

The data for Chengdu, China, is cleaned and available below. Please note this data is meant for demonstration only.

In [2]:
LIGHTS_URL = 'https://raw.githubusercontent.com/ajduberstein/lights_at_night/master/chengdu_lights_at_night.csv'
df = pd.read_csv(LIGHTS_URL)
df.head()
Out[2]:
year lng lat brightness
0 1993 104.575 31.808 4
1 1993 104.583 31.808 4
2 1993 104.592 31.808 4
3 1993 104.600 31.808 4
4 1993 104.675 31.808 4

Setting the colors

pydeck does need to know the color for this data in advance of plotting it

In [3]:
df['color'] = df['brightness'].apply(lambda val: [255, val * 4,  255, 255])
df.sample(10)
Out[3]:
year lng lat brightness color
208329 2007 103.942 30.158 3 [255, 12, 255, 255]
167241 2013 104.100 30.492 57 [255, 228, 255, 255]
142193 2003 103.375 29.967 3 [255, 12, 255, 255]
186941 2007 103.500 31.267 3 [255, 12, 255, 255]
36436 1995 104.850 31.750 6 [255, 24, 255, 255]
213537 2007 104.525 29.767 3 [255, 12, 255, 255]
261245 2005 104.658 31.600 4 [255, 16, 255, 255]
3944 1993 104.375 31.083 11 [255, 44, 255, 255]
231561 2011 105.267 30.900 5 [255, 20, 255, 255]
153787 2013 104.233 31.308 28 [255, 112, 255, 255]

Plotting and interacting

We can plot this data set of light brightness by year, configuring a slider to filter the data as below:

In [4]:
plottable = df[df['year'] == 1993].to_dict(orient='records')

view_state = pdk.ViewState(
    latitude=31.0,
    longitude=104.5,
    zoom=8)
scatterplot = pdk.Layer(
    'HeatmapLayer',
    data=plottable,
    get_position=['lng', 'lat'],
    get_weight='brightness',
    opacity=0.5,
    pickable=False,
    get_radius=800)
r = pdk.Deck(
    layers=[scatterplot],
    initial_view_state=view_state,
    views=[pdk.View(type='MapView', controller=None)])
r.show()
In [5]:
import ipywidgets as widgets
from IPython.display import display
slider = widgets.IntSlider(1992, min=1993, max=2013, step=2)
def on_change(v):
    results = df[df['year'] == slider.value].to_dict(orient='records')
    scatterplot.data = results
    r.update()
    
slider.observe(on_change, names='value')
display(slider)