
Lexical analysis and parsing

A. Reserved words

Reserved words are not reserved when used as fields. So return=1 is illegal, but
foo.return=1 is fine.

B. Round, square, and curly brackets

In Python and in C it's simple -- function are called using parentheses, and array subscripted
with square brackets. In Matlab and in Fortran both are done with parentheses, so there is no
visual difference between function call foo(x) and indexing array foo.

C. Handling the white space.

There are four kinds of ws, each recognized by a dedicated rule: NEWLINE, COMMENT,
ELLIPSIS, and SPACES. Only NEWLINE returns a token, the three others silently discard their
input. NEWLINE collects adjacent \n characters and returns a single SEMI token:

def t_NEWLINE(t):
 r'\n+'
 t.lexer.lineno += len(t.value)
 if not t.lexer.parens and not t.lexer.braces:
 t.value = ";"
 t.type = "SEMI"
 return t

Comments come in two flavors -- regular and MULTILINE.

The regular comments are discarded, while MULTILINE become doc strings, and are
handled as expr statements. regular consume everything from % or # up to but not including
n:

(%|\#).*

Multiline COMMENT rule drops leading blanks, then eats everything from % or # up to the end
of line, including newline character. COMMENT leaves one newline character, or else funny
things happen:

@TOKEN(r"(%|\#).*")
def t_COMMENT(t):
 if not options.do_magic or t.value[-1] != "!":
 t.lexer.lexpos = t.lexer.lexdata.find("\n",t.lexer.lexpos)

Multiline comments:

(^[\t](%|\#).*\n)+

The pattern for multi-line comments works only if re.MULTILINE flag is passed to ctor.

Comments starting with %! have a special meaning TBD

ELLIPSIS is the matlab way for line continuation. It discards everything between ... and the
newline character, including the trailing \n:

def t_ELLIPSIS(t):
 r"\.\.\..*\n"
 t.lexer.lineno += 1
 pass

SPACES discards one or more horisontal space characters. Not clear what escape sequence is
supposed to do:

def t_SPACES(t):
 r"(\\\n|[\t\r])+"
 pass

D. p_TRANSPOSE

a. A quote, immediately following a reserved word is always a STRING. Implemented using
inclusive state afterkeyword:

t.type = reserved.get(t.value,"IDENT")
if t.type != "IDENT" and t.lexer.lexdata[t.lexer.lexpos]=="'":
 t.lexer.begin("afterkeyword")

b. A quote, immediately following any of: (1) an alphanumeric charater, (2) right bracket,
parenthesis or brace, or (3) another TRANSPOSE, is a TRANSPOSE. Otherwise, it starts a
string. If the quote is separated from the term by line continuation (...), matlab starts a
string, so these rules still holds.:

def t_TRANSPOSE(t):
 r"(?<=\w|\]|\)|\})((\.')|')+"
 # <---context ---><-quotes->
 # We let the parser figure out what that mix of quotes and
 # dot-quotes, which is kept in t.value, really means.
 return t

E. Keyword end -- expression and statement

Any of: endwhile, etc. are END_STMT. Otherwise, if end appears inside parentheses of any
kind, it's END_EXPR. Otherwise, end is illegal.

F. Optional end statement as function terminator

Inconsistency between Matlab and Octave, easily solved if the lexer effectively handles the
whitespace:

function : FUNCTION
 | END_STMT SEMI FUNCTION

This usage is consistent with the other cases -- (1) statements start with a keyword and are
terminated by the SEMI token, and (2) the lexer combines several comments, blanks, and other
junk as one SEMI token. Compare parse.py rule for RETURN statement.

G. Semicolon as statement terminator, as column separator in matrices.

Comma, semicolon, and newline are statement terminators. In matrix expressiions, whitespace
is significant and separates elements just as comma does.

H. Matrix state

In matrix state, consume whitespace separating two terms and return a fake COMMA token. This
allows parsing [1 2 3] as if it was [1,2,3]. Handle with care: [x + y] vs [x +y]

Term T is:

(1) a name or a number
(2) literal string using single or doble quote
(3) (T) or [T] or {T} or T' or +T or -T

Terms end with:

(1) an alphanumeric charater \w
(2) single quote (in octave also double-quote)
(3) right parenthesis, bracket, or brace
(4) a dot (after a number, such as 3.

The pattern for whitespace accounts for ellipsis as a whitespace, and for the trailing junk.

Terms start with:

(1) an alphanumeric character
(2) a single or double quote,
(3) left paren, bracket, or brace and finally
(4) a dot before a digit, such as .3 .

TODO: what about curly brackets ???
TODO: what about dot followed by a letter, as in field
[foo .bar]

t.lexer.lineno += t.value.count("\n")
t.type = "COMMA"
return t

Class matlabarray
Matlab arrays differ from numpy arrays in many ways, and class matlabarray captures the following
differences:

A. Base-one indexing

Following Fortran tradition, matlab starts array indexing with one, not with zero.
Correspondingly, the last element of a N-element array is N, not N-1.

B. C_CONTIGUOUS and F_CONTIGUOUS data layout

Matlab matrix elements are ordered in columns-first, aka F_CONTIGUOUS order. By default,
numpy arrays are C_CONTIGUOUS. Instances of matlabarray are F_CONTIGUOUS, except if
created empty, in which case they are C_CONTIGUOUS.

matlab numpy

> reshape(1:4,[2 2])
1 3
2 4

>>> a=matlabarray([1,2,3,4])
>>> a.reshape(2,2,order="F")
1 3
2 4

>>> a.reshape(2,2,order="C")
1 2
3 4

>>> a=matlabarray([1,2,3,4])
>>> a.flags.f_contiguous
True
>>> a.flags.c_contiguous
False

>>> a=matlabarray()
>>> a.flags.c_contiguous
True
>>> a.flags.f_contiguous
False

C. Auto-expanding arrays

Arrays are auto-expanded on out-of-bound assignment. Deprecated, this feature is widely used
in legacy code. In smop, out-of-bound assignment is fully supported for row and column vectors,
and for their generalizations having shape

[1 1 ... N ... 1 1 1]

These arrays may be resized along their only non-singular dimension. For other arrays, new
columns can be added to F_CONTIGUOUS arrays, and new rows can be added to
C_CONTIGUOUS arrays.

matlab numpy

> a=[]
> a(1)=123
> a
123

>>> a=matlabarray()
>>> a[1]=123
>>> a
123

D. Create by update

In matlab, arrays can be created by updating a non-existent array, as in the following example:

>>> clear a
>>> a(17) = 42

This unique feature is not yet supported by smop, but can be worked around by inserting
assignments into the original matlab code:

>>> a = []
>>> a(17) = 42

E. Assignment as copy

Array data is not shared by copying or slice indexing. Instead there is copy-on-write.

F. Everything is a matrix

There are no zero or one-dimensional arrays. Scalars are two-dimensional rather than
zero-dimensional as in numpy.

G. Single subscript implies ravel.

TBD

H. Broadcasting

Boadcasting rules are different

I. Boolean indexing

TBD

J. Character string constants and escape sequences [ffd52d5fc5]

In Matlab, character strings are enclosed in single quotes, like 'this', and escape sequences
are not recognized:

matlab> size('hello\n')
1 7

There are seven (!) characters in 'hello\n', the last two being the backslash and the letter n.

Two consecutive quotes are used to put a quote into a string:

matlab> 'hello''world'
hello'world

In Octave, there are two kinds of strings: octave-style (enclosed in double quotes), and
matlab-style (enclosed in single quotes). Octave-style strings do understand escape sequences:

matlab> size("hello\n")
1 6

There are six characters in "hello\n", the last one being the newline character.

Octave recognizes the same escape sequnces as C:

\" \a \b \f \r \t \0 \v \n \\ \nnn \xhh

where n is an octal digit and h is a hexadecimal digit.

Finally, two consecutive double-quote characters become a single one, like here:

octave> "hello""world"
hello"world

Data structures

A. Empty vector [], empty string "", and empty cellarray {}

matlab numpy

> size([])
0 0

> size('')
0 0

> size({})
0 0

>>> matlabarray().shape
(0, 0)

>>> char().shape
(0, 0)

>>> cellarray().shape
(0, 0)

B. Scalars are 1x1 matrices

matlab numpy

> a=17
> size(a)
1 1

>>> a=matlabarray(17)
>>> a.shape
1 1

C. Rectangular char arrays

Class char inherits from class matlabarray the usual matlab array behaviour -- base-1 indexing,
Fortran data order, auto-expand on out-of-bound assignment, etc.

matlab numpy

> s='helloworld'
> size(s)
1 10
> s(1:5)='HELLO'
> s
HELLOworld
> resize(s,[2 5])
HELLO
world

>>> s=char('helloworld')
>>> print size_(s)
(1,10)
>>> s[1:5]='HELLO'
>>> print s
HELLOworld
>>> print resize_(s,[2,5])
HELLO
world

D. Row vector

matlab numpy

> s=[1 2 3] >>> s=matlabarray([1,2,3])

E. Column vector

matlab numpy

> a=[1;2;3]

> size(a)
3 1

>>> a=matlabarray([[1],
 [2],
 [2]])
>>> a.shape
(3, 1)

F. Cell arrays

Cell arrays subclass matlabarray and inherit the usual matlab array behaviour -- base-1
indexing, Fortran data order, expand on out-of-bound assignment, etc. Unlike matlabarray, each
element of cellarray holds a python object.

matlab numpy

> a = { 'abc', 123 }
> a{1}
abc

>>> a=cellarray(['abc',123])
>>> a[1]
abc

G. Cell arrays of strings

In matlab, cellstrings are cell arrays, where each cell contains a char object. In numpy, class
cellstring derives from matlabarray, and each cell contains a native python string (not a char
instance).

matlab numpy

> a = { 'abc', 'hello' }

> a{1}
abc

>>> a=cellstring(['abc',
 'hello'])
>>> a[1]
abc

Data structures

All matlab data structures subclass from matlabarray

Structs

TBD

Function pointers

Handles @

String concatenation

Array concatenation not implemented

>>> ['hello' 'world']
helloworld

	Lexical analysis and parsing
	Class matlabarray
	Data structures

