
Py FS: A Python Package for Feature Selection

Ritam Guha, Shameem Ahmed, Trinav Bhattacharyya, Bitanu
Chatterjee, Ali Hussain Khan, Khalid Hassan Sk, Manosij Ghosh

supervised by
Dr. Ram Sarkar

An initiative by
Department of Computer Science and Engineering

Jadavpur University
India

November, 2020



User Manual for Py FS: A Python Package for

Feature Selection

November 2020

1 Introduction

Feature Selection (FS) is considered as one of the most important pre-processing
steps in any machine learning or data mining algorithm. With the rapid ad-
vancement in science and technology, we are dealing with huge amount of data.
The dimensions of these data are increasing exponentially, day-by-day. Now,
for a normal machine learning or data mining algorithm, it becomes a tedious
job to handle such a huge dataset. And needless to say, we have entered an era
where data is considered as the new currency, which has the ability to change
the way we think. So, handling data with utmost care is very important. FS
makes the job easier for any such algorithm by reducing the dimensionality of
the dataset. The rejected features are considered redundant/ irrelevant for any
classification purpose. Hence, by reducing the number of features, FS helps to
reduce the computational complexity as well as the storage requirement. More-
over, by removing the unwanted features which may act as noise during the
classification process, the classification accuracy can be improved a lot. Reduc-
ing the number of redundant features drastically reduces the running time of
a learning algorithm, which helps in obtaining a better comprehension into the
basal intricacies of a practical classification problem. FS methods try to choose
a subset of features that are relevant to the learning model. This would eventu-
ally help reduce the training time of the learning model and storage requirement.

Now-a-days, FS is extensively used in several fields for its effectiveness. As
it helps in improving results of classification problems, the research commu-
nity is investing a significant amount of time in it. We can divide FS methods
broadly into two categories based on the evaluation criteria of the features: Fil-
ter method and Wrapper method.

Filter methods uses some statistical measure or intrinsic properties of the
dataset and provides a rank-list of the features based on their relevance. This
approach measures the relevance of features by their correlation with dependent
variables.

1



Wrapper methods, on the other hand, proceed by introducing random sub-
sets of features at the beginning. A learning algorithm (like a classifier) is then
used to measure the quality of the subsets followed by a guided mechanism
where the better subsets guide the worse ones to improve their own quality by
discarding or selecting appropriate features. These methods are very effective
for any kind of classification task. But, use of a learning algorithm makes wrap-
per methods computationally expensive and inappropriate for use when there
are certain constraints on computational power and time requirements.

This user manual aims at providing a better understanding of our python
package (Py FS) to make the users comfortable at handling the different FS
methods. The understanding of the APIs of Py FS will help the users to make
effective use of this package. The user manual will be updated continuously as
per requirement. Welcome to the world of Py FS !!!

2 Modules

Py FS currently focuses on three different sectors of feature selection: nature-
inspired wrappper methods, filter methods and evaluation metrics. These three
sectors are described in detail:

2.1 Wrapper-based Nature-inspired Feature Selection

Wrapper-based Nature-inspired methods are very popular feature selection ap-
proaches due to their efficiency and simplicity. These methods progress by
introducing random set of candidate solutions (agents which are natural ele-
ments like particles, whales, bats etc.) and improving these solutions gradually
by using guidance mechanisms of fitter agents. In order to calculate the fit-
ness of the candidate solutions, wrappers require some learning algorithm (like
classifiers) to calculate the worth of a solution at every iteration. This makes
wrapper methods extremely reliable but computationally expensive as well.

Py FS currently supports the following 12 wrapper-based FS methods:

• Binary Bat Algorithm (BBA)

• Cuckoo Search Algorithm (CS)

• Equilibrium Optimizer (EO)

• Genetic Algorithm (GA)

• Gravitational Search Algorithm (GSA)

• Grey Wolf Optimizer (GWO)

• Harmony Search (HS)

2



• Mayfly Algorithm (MA)

• Particle Swarm Optimization (PSO)

• Red Deer Algorithm (RDA)

• Sine Cosine Algorithm (SCA)

• Whale Optimization Algorithm (WOA)

2.2 Filter-based Feature Selection

Filter methods do not use any intermediate learning algorithm to verify the
strength of the generated solutions. Instead, they use statistical measures to
identify the importance of different features in the context. So, finally every
feature gets a rank according to their relevance in the dataset. The top features
can then be used for classification.

Py FS currently supports the following 4 filter-based FS methods:

• Pearson Correlation Coefficient (PCC)

• Spearman Correlation Coefficient (SCC)

• Relief

• Mutual Information (MI)

2.3 Evaluation Metrics

The package comes with tools to evaluate features before or after FS. This helps
to easily compare and analyze performances of different FS procedures.

Py FS currently supports the following evaluation metrics:

• classification accuracy

• average recall

• average precision

• average f1 score

• confusion matrix

• confusion graph

3 Function Descriptions

In this section, the functions available in Py FS are described along with their
necessary and optional parameter configurations.

3



3.1 Wrappers

General Parameters:

Some parameters are used very frequently. We need to discuss these param-
eters before proceeding with the function prototypes.

• num agents (integer): number of search agents

• max iter (integer): maximum number of generations

• train data (numpy array): training samples of data

• train label (numpy vector): class labels for the training samples

• obj function (function): the objective function for feature

format: obj function(agent, train X, test X, train Y, test Y )
When the user wants to provide an objective function, this format needs
to be followed. The parameters for the function are:

agent (numpy vector): an alias of a search agent in the process
train X (numpy array): set of training data
test X (numpy array): set of test data
train Y (numpy vector): set of training labels
test Y (numpy vector): set of test labels

default: compute fitness(agent, train X, test X, train Y, test Y ) com-
pute fitness computes the fitness of an agent using the following equation:

fitness = 0.7 × accuracy(agent) + 0.3 × tot feat− sel feat

tot feat
(1)

where accuracy(agent) refers to the classification accuracy provided by
the agent, tot feat is the total number of features present in the agent
and sel feat is the number of features selected by the agent. It can be
seen that 70% importance is provided to accuracy, while 30% is provided
to the number of unselected features.

• trans function shape (character): the shape of the function to map
real values to binary values for feature selection

Currently, Py FS provides three different shapes of transfer functions:
‘s’, ‘v’, ‘u’
default: ’s’

• save conv graph (boolean): boolean value stating if the user wants to
save the convergence graphs produced during the process
default: False

4



Function Prototypes:

1. Py FS.wrapper.nature inspired.BBA(num agents, max iter, train data,
train label, obj function=compute fitness, trans function shape=‘s’, con-
stantLoudness=True, save conv graph=False)

Unique Parameters:

• constantLoudness (boolean): boolean value to ensure if the user
wants to keep the loudness constant throughout the generations
default: True

2. Py FS.wrapper.nature inspired.CS(num agents, max iter, train data,
train label, obj function=compute fitness, trans function shape=‘s’, save conv graph=False)

3. Py FS.wrapper.nature inspired.EO(num agents, max iter, train data,
train label, obj function=compute fitness, trans function shape=‘s’, save conv graph=False

4. Py FS.wrapper.nature inspired.GA(num agents, max iter, train data,
train label, obj function=compute fitness, trans function shape=‘s’, prob cross=0.4,
prob mut=0.3, save conv graph=False)

Unique Parameters:

• prob cross (range: [0, 1]): probability of crossover
default: 0.4

• prob mut (range: [0, 1]): probability of mutation
default: 0.3

5. Py FS.wrapper.nature inspired.GSA(num agents, max iter, train data,
train label, obj function=compute fitness, trans function shape=‘s’, save conv graph=False)

6. Py FS.wrapper.nature inspired.GWO(num agents, max iter, train data,
train label, obj function=compute fitness, trans function shape=‘s’, save conv graph=False)

7. Py FS.wrapper.nature inspired.HS(num agents, max iter, train data,
train label, obj function=compute fitness, trans function shape=‘s’, save conv graph=False)

8. Py FS.wrapper.nature inspired.MA(num agents, max iter, train data,
train label, obj function=compute fitness, trans function shape=‘s’, prob mut=0.2,
save conv graph=False)

Unique Parameters:

• prob mut (range: [0, 1]): probability of mutation
default: 0.2

5



9. Py FS.wrapper.nature inspired.PSO(num agents, max iter, train data,
train label, obj function=compute fitness, trans function shape=‘s’, save conv graph=False)

10. Py FS.wrapper.nature inspired.RDA(num agents, max iter, train data,
train label, obj function=compute fitness, trans function shape=‘s’, save conv graph=False)

11. Py FS.wrapper.nature inspired.SCA(num agents, max iter, train data,
train label, obj function=compute fitness, trans function shape=‘s’, save conv graph=False)

12. Py FS.wrapper.nature inspired.WOA(num agents, max iter, train data,
train label, obj function=compute fitness, trans function shape=‘s’, save conv graph=False)

Function returns:

Each one of the functions return an object of class. This Solution class has
following member variables:

Solution

• best agent: best feature vector over all the iterations

• best fitness: fitness value of the best agent

• best accuracy: classification accuracy of the best agent

• final population: final population of agents

• final fitness: fitness value of the final population

• final accuracy: classification accuracy of the final population

• convergence curve: record of fitness and number of features over the
course of iteration

• execution time: time required to execute the piece of code

3.2 Filters

Every filter method in Py FS uses two general parameters:

• data (numpy array): training data

• target (numpy vector): class labels for training data

Function Prototypes

1. Py FS.filter.MI(data, target)

2. Py FS.filter.PCC(data, target)

3. Py FS.filter.Relief(data, target)

6



4. Py FS.filter.SCC(data, target)

Function returns:

Each one of the functions return an object of a class. This class has following
member variables:

Solution

• scores: scores provided to the features

• ranks: ranks of the features

• ranked features: the feature values after ordering them according to
ranks

3.3 Evaluation Metrics

The third utility of Py FS is the evaluation metrics for the classification.

Function Prototype:

Py FS.evaluation.evaluate(train X, test X, train Y, test Y, agent=None,
classifier=’knn’, save conf mat=False)

Parameters:

• train X (numpy array): set of training data

• test X (numpy array): set of test data

• train Y (numpy vector): set of training labels

• test Y (numpy vector): set of test labels

• agent (numpy vector): an alias of a search agent in the process
default:None

• classifier (string): name of the classifier to use. Py FS currently sup-
ports three classifiers:
‘knn’: K-Nearest Neighbors
‘rf ’: Random Forest
‘svm’: support vector machine
default:‘knn’

• save conf mat (boolean): boolean value stating if the user wants to
save the confusion matrix produced during the process

7



Function returns:

The evaluate function return an object of a Result class. This class contains
the following member variables:

Result

• predictions: prediction labels generated for test data (test X)

• accuracy: classification accuracy provided by the features in agent. If
agent is None, all the features are used.

• recall: recall value for the predictions

• precision: precision value for the predictions

• f 1 score: f 1 score for the predictions

• confusion matrix: confusion matrix of classification

4 Quick Demonstration

Please dive into the following link for a quick demonstration of Py FS:
Py FS: Demonstration

8

https://colab.research.google.com/drive/1PafNTmVgWv9Qz6j7bI41XqPT6CCCIb1T?usp=sharing

	Introduction
	Modules
	Wrapper-based Nature-inspired Feature Selection
	Filter-based Feature Selection
	Evaluation Metrics

	Function Descriptions
	Wrappers
	Filters
	Evaluation Metrics

	Quick Demonstration

