
Version history

version 3.0.7:

• Added a Windows batch file to the distribution that, when executed, will startup
pyote. The file is called PYOTE.bat and is automatically copied to C:\Anaconda3 (if
it is not already there) when pyote is first run. Now, to create a clickable desktop
icon for starting up pyote, a user need only go to the C:\Anaconda3 directory, locate
the PYOTE.bat file, create a shortcut to it, and drag the shortcut to the desktop.
Remember, that file does not appear until the first run of pyote 3.0.2.

The ‘skipped’ version numbers were caused by the need for repeated testing of this
new feature, each test requiring a new version, even though functionality did not
change,

version 3.0.1:

• Restored the vertical splitter between the command/plot area and the table/report
area. Somewhere along the line this capability was accidentally removed, and the
lack of the splitter was not noticed. Now it’s back.

version 3.0.0:

• No code changes. This version is the same as 2.1.6 except that it is built on python
3.7. The previous versions used python 3.6. This allows new users to install the
latest Anaconda3 version (which installs python 3.7) without fiddling with archived
Anaconda3 versions.

version 2.1.6:
• We now disable the Accept integration button on the first left click in the light

curve. As such a click removes the color bars that result from the automatic
block integration analysis, it seems intuitive to disable the Accept integration
button at that time as well.

version 2.1.5:
• Disable the Accept integration button when user overrides an automatic block

analysis with a manual block selection followed by a click on the Block integrate
button.

version 2.1.4:
• Corrected a bug that kept manual selection of block integration from being

performed after a refusal to accept the automatic block analysis results.

version 2.1.3:
• A minor change to how color bars are plotted when the automatic block

integration feature is employed. The edges now appear between data points so
the bands are easier to see, particularly for 2 point block sizes.

version 2.1.2:

• To ease usage of the automatic block integration feature, accepting the
automatically determined block integration parameters no longer uses a modal

query box, which interfered with the ability to explore/expand the light curve plot.
Now there is separate button which gets enabled after an automatic block
integration completes.

version 2.1.1

• Added progress bar tracking of block integration analysis because it can take an
extended amount of time to complete the analysis when the light curve has
many points.

version 2.1.0
• Added automatic determination of 'correct' block size and offset for block

integration when user clicks Block integrate button without selecting the two
points normally required to specify integration block beginning and end. The
user can choose to accept or reject pyote's opinion of the correct parameters to
use when the automation determination is invoked.

version 2.0.9
• Made the selection of Tooltip display 'sticky'
• Duration calculation when D and R span midnight now handled correctly

version 2.0.8

• toolTips changed to invoke and display in a custom dialog box that can be
moved and resized to better accommodate legacy displays

• Calc flash timing calculation fixed to properly deal with the non-integer frame
numbers that can result from field processed csv files

• Flash timing has been verified to work with integrated light curves
• Made block integration 'sticky' in that a 'Start over' no longer undoes a previous

block integration. As a result, once block integration has been performed after a
file read, it cannot be done again; a reread of the original file is now required.

version 2.0.7
This version provides several features to ease the processing of light curves that are
timed with LED flashes from iPhones (John Grismore's AstroFlashTimer) or Android
phones (Eric Couto's Occult Flash) rather than VTI timestamped files

• Adds a button to calculate the edge position of an LED timing flash.
• Adds a checkbox to enable/disable the tooltip messages that appear when a

control is hovered over. Tooltip display defaults to 'enabled' because tooltips are
an important aid for guiding users initially. Later, when such help is no longer
needed, the user can turn them off (they are annoying when you don't need
them).

• Adds the ability to select which light curve is to be analyzed. Previous versions
would only analyze the first light curve for D and R events. This flexibility is
useful in general, but was particularly needed to support LED flash timing.

• Adds a checkbox to force manual entry of timestamp info. This is useful when
OCR on a VTI timed light curve has catastrophic errors. It is always employed
when using LED flash timing.

• During the error bar calculation, it is possible for the Cholesky decomposition
needed for treating correlated noise to fail. Previous versions treated this as a

fatal error and would not produce a final report. This version instead treats the
noise as uncorrelated and continues processing to produce a final report.

version 2.0.6

• Added additional instruction in the popup that appears when no timestamps are
found in the csv file. This will give casual users additional guidance and
clarification for the manual timestamp entry process.

version 2.0.5
• files generated by pyote now contain PYOTE in the filename.

• Timestamps can be corrupted to the point that a timeDelta of 0.0 can result.

This version traps that event and reports it clearly --- 2.0.4 failed silently with a
divide by zero exception

version 2.0.4
• improves the handling of errors during the reading of Tangra files by showing

the offending line in the report panel. Tangra, if it has a tracking problem (i.e.,
loses it) will emit an empty field for that measurement, leaving it up to the user
to decide how to fill in the missing value. Prior pyote versions simply reported
'format error' without providing a printout of the offending line. This version fixes
that.

version 2.0.3

• detects and handles situations in which fewer than 14 baseline points are
available for calculation of correlated noise coefficients. When fewer than 14
points are available, the correlation coefficients are set to: [1, 0, …] (i.e.,
coefficients are set to 'no correlated noise')

version 2.0.2

• Note: this version has many significant changes. If you lose confidence in this
version, remember that you can always go back to version 1.47 by typing ---

 pip install pyote==1.47

in an Anaconda console. (Be sure to use double == signs in the command.)

• improved handling of D and R region selection so that one cannot enter an
invalid configuration --- automatic corrections/changes are applied.

• incorporates a new 'solver' that no longer requires an initial estimation of
baseline noise. This 'solver' is also much faster. With this 'solver', the two-pass
modification added in version 1.46 is no longer needed.

• removes unneeded 'analyze noise' buttons and rearranged other buttons to be
in-line rather than one above the other to allow the vertical splitter between the
plot area and report area more room to change (a help to those using screens
with relatively low pixel densities).

version 1.47
• adds bold red highlighting to message:

! There is something wrong with timestamps at D and/or R or frames have been dropped !

so that it is harder to miss.

version 1.46

• adds automatic recalculation of baseline and event noise parameters utilizing all
available data points during a second solution pass; this removes the variability
in calculated error bars due to user selection of a necessarily less complete set
of data points for noise analysis during the first solution pass.

• adds bold blue text in the 'Excel' portion of the final report to indicate whether or
not the light curve was block integrated, trimmed, or normalized. Failing to block
integrate a light curve that needed it is a common error. Highlighting the
presence or absence of block integration in the most looked at portion of the
final report will hopefully help reduce the number of such errors.

Version 1.45

• the initial fully functional release of pyote.

Introduction to pyote

Bob Anderson (bob.anderson.ok@gmail.com)

pyote is an occultation timing extraction utility program written primarily in python and
distributed through PyPI (the python package repository).

This program is specifically designed for those who will use such a program infrequently; it
has been designed to the best of my ability to produce consistent results in the hands of both
infrequent and frequent users --- the same results should be obtained no matter who
processed the data.

One important feature of the program intended to give confidence to the occasional user is
the production of a log file that documents all processing steps/decisions made in sufficient
detail that anyones result can be reviewed by more experienced users easily --- it is sufficient
to simply send such a reviewer just two things: the light curve and the log file.

1. pyote is designed for ease-of-use in the analysis of so-called square wave occultation
light curves (defined as occultation recordings that exhibit no detectable diffraction
effects). Such light curves are common with star/asteroid occultations when the star is
effectively a point source and the asteroid transit speed is such that the
disappearance/reappearance events occur much faster than the frame rate of the
video recorder.

2. Correlated noise caused by atmospheric scintillation is frequently present in
occultation observations recorded at normal video rates of 25 or 30 frames per
second. pyote utilizes statistically rigorous calculations to properly characterize the
increased uncertainty in D/R time estimates due to such correlated noise.

3. Physically realistic models are fit to the light curves with all decisions about details
(complexity) of the model used made using the Akaike Information Criterion (AIC). In
particular, an AIC calculation is always used to justify or reject sub-frame timing.

4. Maximum Likelihood Estimation is used throughout to determine 'best fit' of model light
curves to the actual data.

The gui for pyote is designed to lead the user through the necessary steps by enabling the
buttons in sequence as each task is performed. So, initially, only two principal buttons are
enabled: the 'info' button that brought up this document and the 'Read light curve' button.
After reading this document, open a light curve, and follow the enabled buttons.

All of the major buttons have hover text associated. To learn (or refresh) how to use the
program to analyze a light curve, spending a little time 'hovering' on the buttons will pay
dividends.

pyote will never change the input light curve, so experimentation is encouraged. There is a
'Start Over' button at the bottom that I encourage you to use freely.

Every step you make in the analysis is recorded in a log file. This is done because

mailto:bob.anderson.ok@gmail.com

experience has shown that some light curves are touchy to analyze and it is useful to ask
someone more experienced in running the program to look over your work. With the original
light curve and a copy of the log file, your work can be exactly duplicated by someone else.
And that log file is never deleted once it is opened for a particular light curve; it is simply
appended to, so a record of each 'experiment' is thus always available.

Every time pyote is started, it connects to PyPI (assuming you have an internet connection)
and checks to see if a more recent version of pyote has been added to the repository. If your
version is completely up-to-date, you will see this

in the log file panel in the lower right-hand corner of the gui. Otherwise, this will appear:

Normally, you will want to click 'yes'. That will cause your current version of pyote to install
(but not run) the newest version. Of course, to execute that new version, you will need to do
a close and reopen.

As convenient as this is, there is always a small risk that a new version will actually 'break'
something and that the 'cure' may take some time to be posted. But it is always possible to
return to a specific previous version of pyote. The procedure to do this is explained below.

Open an Anaconda Prompt window if you are running Windows.

For a Mac installation, open a command window and type source activate.

Then, type the following line in that command window:

1. pip install pyote==1.42

This command will uninstall the current (flawed) version of pyote and installs a specific
version, in this case, version 1.42. Note the double == followed by the specific version
number to be installed. (You can always determine a version of pyote that was working
for you by opening a recent log file --- the pyote version that produced that log file is
recorded there.)

