
UQpy - Uncertainty Quantification with Python

Dimitris G. Giovanis, M. D. Shields

Johns Hopkins University, USA

1. Installing UQpy1

Prerequisites: You have at least one Python interpreter 3.6+ properly in-2

stalled on your computer. In order to get the latest experimental version of3

UQpy the code can be installed from Github directly as follows:4

$git clone https://github.com/SURGroup/UQpy.git5

$cd UQpy/6

$pip install -r requirements.txt.7

$python setup.py install.8

The last command might need sudo prefix, depending on your python setup.9

2. Overview10

UQpy (Uncertainty Quantification (UQ) using python) is a software toolbox11

containing a collection of modules written in Python that provide standard-12

ized solutions for many UQ problems that occur in physical model. Con-13

nection between UQpy and the user-defined computational model is made14

with text-based and bash shell script(s) provided by the user. Execution of15

UQpy results in realizations of the parametric space of interest using advanced16

techniques, as well as evaluations the corresponding model responses. UQpy17

is entirely code-agnostic and gives users a fully functional tool for performing18

UQ with nearly any computational analysis code. UQpy performs submission,19

execution, monitoring and post-process analysis, specifically tailored to the20

Preprint submitted to Journal Name March 19, 2018

analysis tool and the available platform and thus, it is amenable to perform-21

ing adaptive UQ methods. UQpy is written in the Python 3 programming22

language.23

2.1. Compiled version of UQpy24

We need to address the Windows version25

2.2. Interpreted version of UQpy26

The interpreted version of UQpy requires a Python shell supporting Python27

3.6+ as well as several common Python libraries as well. After downloading28

and installing UQpy, the following UQpy-specific files are required and must29

be co-located in the subdirectory lib/UQpy, which is in the same directory30

as UQpy cmd.py:31

· UQpyModules.py - Contains various functions.32

· SampleMethods.py - Contains the available sampling methods used for33

exploring the parameter space.34

· ReadInputFile.py - Reads the necessary UQ Parameter data file in case35

of running UQpy via command line, and converts it to python variables.36

· PDFs.py - Contains the percent point functions of all the supported37

distributions; any new distribution can be added here.38

3. Using UQpy- Required files39

UQpy may be run using either an Integrated Development Environment (IDE)40

used in computer programming, specifically for the Python language or via41

the command line. The interpreted version of UQpy, has been tested to run42

in IDE PyCharm 2017.3.3.43

In order to use UQpy for evaluating the response of any computational44

model for a number of parameter realizations, UQpy requires three exe-45

cutable1 bash shell scripts:46

1$chmod +x name1*.sh

2

• name1*.sh for linking the analysis software to UQpy47

• name2*.sh for converting the the file containing the parameter values48

(text-based file) into appropriate input file for the analysis code49

• name3*.sh converting the result of the software analysis into an appro-50

priate (text-based) file to be read from UQpy. This is necessary in case51

of running adaptive UQ methods and/or post-processing of the results.52

The names of these files are user defined. Additional to these files, if the53

user wants to generate the realizations of the random parameters according54

to one of the available sampling methods provided in UQpy, it is necessary55

to provide an text-based file under the name (UQpy params.txt), which will56

enclose all the probabilistic information required for running the selected57

sampling method. T58

The aforementioned files are directly specified by the user and may be in59

any directory.60

4. UQpy Usage61

UQpy is user friendly since it only requires the user to have basic knowledge62

in writing bash shell scripts.63

4.1. Using the UQpy Command Line Mode64

UQpy can be executed directly through the command line. It is provided as65

an option to the user who doesn’t have sufficient familiarity and experience66

with python. Command line execution is advantageous when analyses need67

to be performed on a high-performance computing systems without direct68

graphics capability. In order to execute the interpreted version UQpy from69

the command line the user needs to change to the UQpy directory and then70

type in terminal :71

$python UQpy cmd.py --dir pathToModel --model name1*.sh --input name2*.sh --output name3*.sh72

Where73

• UQpy cmd.py is the python script that actually runs UQpy via com-74

mand line and needs to be located in the directory UQpy.75

3

• --dir is the absolute path to the folder which contains the necessary76

files {name1*.sh , name2*.sh , name3*.sh and UQpy params.txt}.77

• --model points to the name1*.sh bash script78

• --input points to the name2*.sh bash script79

• --output points to the name3*.sh bash script80

In order for UQpy to run from command line the file UQpy params.txt is nec-81

essary to be located inside --dir otherwise, the execution will return an er-82

ror. However the user may skip the entries {--input, --output, --model}83

if UQpy is utilized only for generating realizations of the random parameter84

and not for model evaluations. Another optional entry for the user is --CPUs85

which sets the number of processors used for the evaluation of the model, in86

case of parallel processing. The user can see all the available options (Fig.87

1) by typing in terminal88

$python UQpy cmd.py --help89

which results in:90

Figure 1:

4

4.2. Using the UQpy IDE Mode91

After installation, UQpy is build in the local Pythons standard library and92

thus, it runs from any Integrated Development Environment (PyCharm,93

Atom, Eclipse, e.t.c) which provides code analysis and debugging. In or-94

der to use UQpy libraries in a project the user needs to import the specific95

module to its workspace. This can be done by writing in a python script96

from UQpy import *97

which will load all modules of UQpy. If a specific class from the sample98

methods (e.g Monte Carlo simulation) is required then the user can selectively99

load it to the project by typing100

from UQpy.SampleMethods import MCS101

This functionality of UQpy enables the independent usage of its modules,102

which makes UQpy a powerful tool for UQ analysis and communication be-103

tween python and various computational codes of different nature. In order104

to generate 100 realizations of two random parameters using MCS the user105

needs to type:106

from UQpy.SampleMethods import MCS107

x = MCS(dimension=2, pdf type=[’Uniform’, ’Uniform’])108

pdf params=[[0, 1], [0, 1]], nsamples=100)109

This will create the object x with is properties:110

1. pdf type: type of distribution for each parameter111

2. pdf params: distribution parameters112

3. nsamples: number of samples to be generated113

4. dimension: number of random parameters114

5. samples: generated samples in the parameter space115

6. samplesU01: generated samples in the Uniform space, U[0, 1]dimension116

5

5. UQpy workflow117

6. Templates for the required Files118

The interaction between UQpy and any external solver is made with text-119

based files which are simple to process and easy to work with in python.120

6.1. Probabilistic Parameter File121

The file that keeps the probabilistic properties of the parameters should122

always be under the name:123

UQpy params.txt124

Creating UQpy params.txt is simple and straightforward; Each property that125

is required for the selected sampling method, is defined in a line that starts126

with a hash-tag (#), followed by a key-word and/or key-phrase (case sensi-127

tive) describing the property2. The file ends with the key-word #end. Under128

that line, the specific attributes of the property are defined, according to the129

UQpy available options. Thus, different sampling methods require different130

parameter file .131

6.1.1. Required properties for various sampling methods132

The properties that need to be specified by the user inside the parameter133

file in order to run different sampling methods, for exploring the parameter134

space. A summary of these properties is given next:135

2The order that the properties are declared in UQpy params.txt is not important .

6

Monte Carlo simulation
Property Mandatory Optional
#method ?
#number of samples ?
#number of parameters ?
#distribution type ?
#distribution parameters ?
#names of parameters ?
#SROM True or False

136

Latin hypercube simulation
Property Mandatory Optional
#method ?
#number of samples ?
#number of parameters ?
#distribution type ?
#distribution parameters ?
#names of parameters ?
#criterion ?
#distance ?
#metric ?
#SROM True or False

137

Stratified sampling
Property Mandatory Optional
#method ?
#distribution type ?
#number of parameters ?
#distribution parameters ?
#design ?
#names of parameters ?
#SROM True or False

138

7

Partially Stratified sampling
Property Mandatory Optional
#method ?
#distribution type ?
#distribution parameters ?
#number of parameters ?
#design ?
#strata ?
#names of parameters ?
#SROM True or False

139

Markov chain Monte Carlo simulation
Property Mandatory Optional
#method ?
#algorithm ?
#number of samples ?
#number of parameters ?
#proposal distribution type ?
#proposal distribution width ?
#target distribution ?
#target distribution parameters ?
#names of parameters ?
#jump ?
#initial seed ?
#SROM True or False

140

Stochastic reduced order model
Property Mandatory Optional

If #SROM property is True
#moments ?
#error function weights ?
#properties to match ?
#sample weights ?

141

6.1.2. Examples of parameter files142

Special instruction on how to create the parameter file that will enclose the143

required properties of the selected sampling method are the following :144

8

• A complete parameter file for e.g. Monte Carlo simulation can defined145

like Fig.2(a).146

• If all random parameters follow the same distribution type with the147

same distribution parameters then a parameter file can defined like148

Fig.2(b) where the distribution type and parameters need to be de-149

fined once. In this case existence of the property ”number of random150

parameters” is mandatory.151

• For the case the number of distribution type is equal to the number of152

distribution parameters (Fig.2(c)) then, definition of property ”number153

of parameters” is optional .154

Figure 2:

6.2. Template Input File155

The functionality of the name2*.sh bash shell script file is to convert the156

text-based output file of UQpy (UQpy run i.txt) that contains the realization157

i of the parameter vector into appropriate input for the analysis code. The158

user is responsible for creating the appropriate bash script for performing159

this action. For example, if the software code reads a text-based file called160

9

modelInput i.txt then a possible name2*.sh script would be the one depicted161

in Fig.3; it is used for renaming UQpy run i.txt to modelInput i.txt.162

Figure 3:

6.3. Template Model File163

In order for UQpy to execute the software code a bash script (name1*.sh) is164

necessary.165

6.4. Template Output File166

The functionality of the name3*.sh bash shell script file is to convert the167

output of the code analysis (which can be at any format) into a text file file168

under the name UQpy eval i.txt”, where i refers to the number of simulation,169

ready to be processed by UQpy. This step is required for running adaptive170

UQ methods as well as for post-processing of the result but in any case it171

is mandatory to provide such file. For example, if the software code gener-172

ates a text-based file called solution i.txt then a possible name3*.sh script173

would be the one depicted in Fig.5; it is used for renaming solution i.txt to174

UQpy eval i.txt”.175

10

Figure 4:

7. Probabilistic sampling176

Property Options
#method ’mcs’, ’lhs’, ’sts’, ’pss’, ’mcmc’

#distribution type
’Uniform’, ’Normal’, ’Lognormal’,
’Weibull’, ’Beta’, ’Exponential’, ’Gamma’

177

7.1. Latin hypercube sampling178

179

Property Type Options
#criterion string ’random’, ’centered’, ’maximin’, ’correlate’

#distance string

’braycurtis’, ’canberra’, ’chebyshev’, ’cosine’,
’dice’, ’euclidean’, ’hamming’, ’jaccard’, ’cityblock’,
’matching’, ’minkowski’, ’rogerstanimoto’, ’correlation’,
’sokalmichener’, ’sokalsneath’, ’sqeuclidean’,
’ ’kulsinski’, ’mahalanobis’, ’russellrao’, ’seuclidean’,

180

11

Figure 5:

7.2. Markov Chain Monte Carlo sampling181

182

Property Options
#target distribution ’multivariate pdf’, ’marginal pdf’, ’normal pdf’
#proposal distribution ’Uniform’, ’Normal’
#algorithm ’MH’, ’MMH’

183

7.3. Partially Stratified sampling184

7.4. Latinized stratified sampling185

7.5. Stochastic reduced order method186

7.6. Adding a sampling method in UQpy187

References188

12

