Welcome to UQpy’s documentation!¶

UQpy (Uncertainty Quantification with python) is a general purpose Python toolbox for modeling uncertainty in physical and mathematical systems. The code is organized as a set of modules centered around core capabilities in Uncertainty Quantification (UQ).

Table of contents¶

  • Installation
    • Development
    • Documentation
    • Help & Support
  • RunModel
    • Architecture & Workflow
    • Examples & Template Files
    • RunModel Class
  • Distributions
    • Parent Distribution Class
    • 1D Continuous Distributions
    • 1D Discrete Distributions
    • Multivariate Distributions
    • Copula
    • User-defined Distributions and Copulas
  • SampleMethods
    • MCS
    • LHS
    • Stratified Sampling
    • Refined Stratified Sampling
    • Simplex
    • AKMCS
    • MCMC
    • IS
  • Transformations
    • Nataf
    • Correlate
    • Decorrelate
  • StochasticProcess
    • Spectral Representation Method
    • Third-order Spectral Representation Method
    • Karhunen Loève Expansion
    • Non-Gaussian Translation Processes
  • Surrogates
    • Stochatic Reduced Order Models - SROMs
    • Gaussian Process Regression / Kriging
  • Reliability
    • Subset Simulation
    • Taylor Series
  • Inference
    • InferenceModel
    • Parameter estimation
    • MLEstimation
    • BayesParameterEstimation
    • Model Selection
    • InfoModelSelection
    • BayesModelSelection
  • DimensionReduction
    • Grassmann
    • DiffusionMaps
  • Utilities
  • News
  • Index

  • Module Index

  • Search Page

Logo

Uncertainty quantification with Python

Navigation

  • Installation
  • RunModel
  • Distributions
  • SampleMethods
  • Transformations
  • StochasticProcess
  • Surrogates
  • Reliability
  • Inference
  • DimensionReduction
  • Utilities
  • News

Related Topics

  • Documentation overview
    • Next: Installation

Quick search

©2020, Michael D. Shields. | Powered by Sphinx 2.2.0 & Alabaster 0.7.12 | Page source
Fork me on GitHub