
Table of Contents
Overview..2
Setup...3
General Usage..4

Assembly Files..4
As2obj...4
Complx..5

Command line parameters..5
Getting Started..6
Interface tour...7
Running Programs..9
Debugging...11
Other features of complx..12

Console Input...12
Memory View..12
True Traps Mode..14
Interrupts Mode..14
Call Stack Viewer...14
Expressions..15

Assembly Files Extended..16
Debugging Comments..16
Subroutine Annotations..18
Plugins..19

Troubleshooting...20
Assembly File Errors..20
Runtime Warning Messages...25

1

Overview
complx-tools is a suite of tools for learning lc3 assembly. It includes both a gui and cli based simulator
(named complx and comp respectively), an assembler (as2obj), a very simple program that runs lc3
assembly files and spits out whats printed to the console (lc3runner). complx-tools also be extended
with plugins that add additional functionality to the LC3. The tools also come with a C++ interface to
the LC3 (liblc3).

These tools are mainly used in CS2110 at Georgia Tech.

Note this document does not explain the lc3 isa, nor does it explain what the instructions do. This
document only explains the set of tools at your disposal for running/testing your programs. If
you want a document that explains the LC-3 ISA then please refer to Appendix A of the text or
the file PattPatelAppA.pdf

2

Setup
To compile complx and pylc3.

To use this make sure you are in the root directory of the source code…

To run the script run the command (sudo ./install.sh)

Compilation and Usage of this program on Mac/Windows is
untested and unsupported by the author of the software, there
are many outstanding issues with running complx on these OSes.

3

General Usage

Assembly Files
An assembly file (with the .asm extension) is just a normal text document. You can create .asm files in
any text editor of your choosing. I recommend gedit which should be preinstalled on your linux
machine, other text editors are emacs, vim, and nano if you are into those. As a sample assembly
program to get you started copy and paste this into a file named helloworld.asm (Be careful to replace
the “”'s marks in the program below as it may have changed into another character).

.orig x3000

LEA R0, HELLOWORLD

PUTS

HALT

; Hello this is a comment

HELLOWORLD .stringz “Hello World”

.end

The next sections will explain the tools you have for running/testing your program

As2obj
This program just assembles files and produces an object file (.obj) and a symbol table file (.sym). I
will explain the formats of these two files later. Invoking the assembler is easy (note the []'s indicate
optional parameters)

as2obj filename.asm [-all_errors] [-disable_plugins] [outfile]

An explanation of the command line parameters:

• -all_errors Report all errors encountered by the assembler if possible

• -disable_plugins Disable use of all lc3 plugins

• outfile output filename

Note if a parameter is enclosed in []'s it means it is optional. When specifying it you do not
include the []'s

4

Complx
This program is the main program you will probably want to run. It is an lc-3 simulator, that allows
you to play through instructions, undo instructions, and modify the state of the lc3 while a program is
running. Also supports a plethora of debugging tools. To start the program you can either find it in the
“Start Menu” (Should be under programming), or start it through the terminal,

complx filename.asm

Command line parameters

The command line parameters as shown below are all optional.

• --unsigned=bool Sets if decimal representations are displayed in unsigned (default 0)

• --disassemble=num Sets the disassemble level 0: basic 1: normal 2: high level (default 1)

• --stack_size=num Sets the Undo stack size (default 65536 instructions)

• --call_stack_size=num Sets the Call stack size (default 10000 subroutine/trap calls)

• --address=hex Sets the PC's starting address (default 0x3000)

• --true_traps=num Enable true traps (see True Traps Mode) (default 0)

• --interrupts_enable=num Enable interrupts (default 0)

• --highlight=num Enable instruction highlighting (default 1)

• --fill-registers=(random or int) Set initial register fill value strategy

• --fill-memory=(random or int) Set initial memory fill value strategy

5

Getting Started

As stated above you can start complx via the command line to load a file immediately by just passing
in the path to the assembly file you want to load.

To load a file via the GUI you can use one of the menu options under the File menu

• Load – Ctrl + O

• Reload – Ctrl + R

• Clean Load – Ctrl + Shift + O

• Advanced Load –

Load Randomizes memory and registers and loads your file.

Reload Loads the last loaded assembly file under the same loading conditions. It will not query you for
a file unless one has not been loaded before.

Clean Load Zeroes out memory and registers and loads your file.

Advanced Load Allows you to set the initial values of registers and memory, console input, and other
things.

6

Interface tour

As a brief tour of the interface

[1] Is the main memory view. This shows the value each address contains in the LC-3 interpreted in
hexadecimal, decimal, binary, and as an LC-3 Instruction. Remember that all instructions can be
represented as a 16 bit value.

So if I had the instruction ADD R0, R0, R0 then I should see the following:

• Hex column I should see x1000

• Decimal column I should see 4096

• Binary column I should see 0001000000000000

• Instruction column I should see ADD R0, R0, R0 (if the disassemble level is set to normal).

[2] The main control buttons. You will use these buttons to run your program (Run) or step through
your program one instruction at a time (Step), you may also undo instructions using Back or rewind the
entire program undoing everything in the undo stack (Rewind).

[3] The current state of all registers. You can enter values in binary, hexadecimal, or decimal. You can
also change the base the registers contents is displayed in by either double clicking the text box or right
clicking and selecting a new base for the register. By default R5-R7 are displayed in hexadecimal since

7

these registers usually contain an address.

[4] Console window output will be displayed here. Also any warnings generated from your program
will also be spit out here.

[5] Console window input will be typed in here. Its best to type your text before the program is ran.

8

Running Programs

The control buttons from the previous section should be used to run your assembly program. I will
explain what each button does in this section

Step – F2 Executes exactly one instruction

Back – Shift + F2 Undoes exactly one instruction

Next Line – F3 Performs one instruction, if used on a subroutine or trap it will execute the entirety of
it, that is, if used on a statement the PC shall point to the next line in the program.

Prev Line – Shift + F3 Undoes one instruction, but if backed into a subroutine or trap will undo the
entirety of it, that is, if used on a statement the PC shall point to the previous line in the program

Run – F4 Runs your program until it HALTs or you stop it manually.

Run For... – Ctrl + F4 Runs for X instructions (will always query you for X)

Rewind – Shift + F4 Repeatedly undoes instructions until the undo stack is exhausted

Finish – Shift + F5 Executes enough instructions to step out of the current subroutine or trap you are in

Run Again – (only available as a menu option) Ctrl + Space Same as Run For but will not query you for
X after the first time it is used

9

Example

This program does nothing interesting, but is designed to show where the PC will end up if you use
each of these buttons. The end result is that 2 should be loaded into R0 by the time HALT is executed

.orig x3000

JSR FAKE_SUBR ;x3000 [1]

HALT ;x3001 [2]

FAKE_SUBR ST R7, SAVE ;x3002 [3]

AND R0, R0, 0 ;x3003

JSR ADD2 ;x3004

LD R7, SAVE ;x3005 [4]

RET ;x3006

ADD2 ADD R0, R0, 2 ;x3007 [5]

RET ;x3008

SAVE .blkw 1 ;x3009

.end

Note the flow of this program is the following instructions at these addresses get executed

x3000, x3002, x3003, x3004, x3007, x3008, x3005, x3006, x3001

control \ point [1] [2] [3] [4] [5]

step x3002 x3001 x3003 x3006 x3008

back x3000 x3008 x3000 x3004 x3004

next line x3001 x3001 x3003 x3006 x3008

prev line x3000 x3000 x3000 x3004 x3004

run x3001 x3001 x3001 x3001 x3001

finish Error Error x3001 x3001 x3005

To read this table look at the instruction with the comment [#] in the header of the column the address
in the cell is the result of using that operation. From the flow of the program above look where the PC
ended up relative to the starting address.

For example see using Finish at point [5] in the program.

Point [5] is address x3007 and using Finish at this point will go to x3005

Therefore the instructions at x3007 and x3008 get executed to perform the Finish operation.

10

Debugging

So what tools does complx provide for people struggling to get a program working. At a basic level the
step and back buttons along with viewing the state of the memory and registers would suffice for
simple programs; however, for bigger programs stepping one instruction at a time may not be enough
or too time consuming. So here are more ways to get more control over a running program.

All of the following can be created from the Debug menu or by right clicking the address and selecting
what you want from the context menu popup.

Breakpoints

A breakpoint should be familiar to anyone who has used a debugger before. A breakpoint simply stops
execution of the program when it is encountered. If a breakpoint is at an address then the program will
stop once the instruction is executed.

Breakpoints are customizable, you can mark the number of times a breakpoint is triggered before it is
inactive. You can also have conditional breakpoints, that is, breakpoints that only stop the program
when a certain condition is met.

Watchpoints

A watchpoint is similar to a breakpoint in that it stops the program the difference is that it isn't tied to
an instruction. A watchpoint is tied to the action of storing to an address or register. The address or
register the watchpoint is interested in is called its target. Once the target is written to a condition is
evaluated and if it is true then the program will stop.

Again these are customizable, you can mark the number of times the watchpoint is triggered before it is
inactive.

Blackboxes

Marking something as a blackbox will never step into it if the step button is used. This should be used
on subroutines/traps you know are correct and don't want to switch between the step and next line
buttons.

11

Other features of complx

Console Input

Input and output is specified in the console window which pops up as a separate window when complx
is loaded. It is best to specify the console input before your program is ran. Any output (and warnings)
will also appear in the window. If there is no input in the console and any instruction that requests the
state of the keyboard input is executed then the program will stop and wait for you to type in input. All
of the buttons at this time will read “NO IO” to mean there is no input. At this time you may not
advance the program or load a new program. To exit this state enter some characters into the console.

Memory View

So now a list of other things the Memory View widget can do.

The memory viewer in the main window of complx will always follow the PC, if you want a memory
view tied to a specific area of memory this can be achieved by first 1) Creating a new memory view
(View > New View or Ctrl+V) then 2) Scrolling the new memory view to the address you are interested
in (View > Goto Address or Ctrl+G) note that the dialog prompt can take an Expression, a Symbol, or
Any Memory address in the format xABCD.

The Memory view is editable. You can modify a memory address in hexadecimal, decimal, binary, and
even via the instruction column. As a reminder do not use the instruction column to type out your
programs as there is no way to save your program via this method. You can also modify the symbol
name bound to an address by modifying the Label column.

Mousing over any instruction in the instruction column will bring up a tooltip with the comments for
that line of code.

If you would like to freely scroll the memory view without scrolling too far, then you should hide any
memory addresses you don't care about. You can do this via View > Hide Addresses > *. This setting
can be configured for each MemoryView you create. A quick explanation of the options in this
submenu

12

Show all Addresses

Self explanatory reverts the memory view back to showing all addresses.

Show only Code/Data

Shows only addresses modified when your program was loaded into the assembler.

Example

.orig x3000

.blkw 16

.end

.orig x4000

.fill 1

.end

Upon using show only code/data the following addresses will only be viewable

x3000-x3010 and x4000

all other addresses will be hidden.

Show Nonzero Addresses

This option scans memory and hides all addresses that contains 0.

Custom

You are allowed to specify what regions of memory you want to be viewable.

The format of this is a list of ranges delimited by a comma in the format start-end_inclusive

example

x3000-x4000, xEF00-xEFFF

13

Will show x3000-x4000 and xEF00-xEFFF

True Traps Mode

By default any traps executed (including HALT) are only emulated and executing any user defined
traps will print out a warning. To disable the trap emulation enable True Traps Mode via State > True
Traps.

Interrupts Mode

By default interrupts will not be issued and if any device generates an interrupt it will not be handled.
You can enable interupts via State > Interrupts.

Call Stack Viewer

A viewer for the activation stack is also kept track of given your subroutines are well formed. To
access this feature Debug > Call Stack. You can improve the view of this dialog by annotating your
subroutines (see Subroutine Annotations) so that information is available for processing the activation
stack.

In addition to viewing the call stack you can also use this dialog to rewind back to a particular function
call in the call stack and viewing that function calls particular stack frame.

14

Expressions

For any prompt requiring a memory address or a symbol you can give it an expression instead.
Expressions are also used to determine when a watchpoint stops the program. The condition of a
watchpoint (or breakpoint and blackbox for that matter) is an expression that gets evaluated to
determine whether it temporarily stops the program. Note that if an expression evaluates to a non zero
value it is considered to be true, otherwise it is false.

Here is a list of variables you can use in expressions:

Registers - R0-R7

Program Counter – PC

Value in memory address – MEM[ADDR]

Any symbol (will resolve to the address where the symbol lives).

Examples

R0 * 5

MEM[x5000] – MEM[x5001]

MEM[MEM[x7000]]

MEM[R4]

PC == HELLOWORLD

For a full list of operators that are supported

• Arithmetic (*, /, %, +, -)

• Bitwise operators &, |, ^

• Logical operators (&&, ||, !&, !|). That is logical and, or, nand, and nor.

• Equality operators ==, !=

• Shifts <<, >>

• Relational operators < > <= >=.

• Parenthesis ()

15

Assembly Files Extended

Debugging Comments

These are special smart comments that will automatically set up debugging breakpoints and
watchpoints within any simulator in complx-tools. Note that use of these comments will not affect the
testing environment nor any autograders. Please see Debugging for an overview of what breakpoints,
watchpoints, and blackboxes are.

Breakpoints

To specify in a comment to create a breakpoint at a specified address you can use one of two ways to
create it.

;@break address=address/symbol/expression name=label condition=1 times=-1

;@break address name condition times

In the first form any parameter can be omitted the default values are given after the equal sign.

In the second the parameters must be given sequentially, that is, if you want to define “times” then you
must specify address, name, and condition. However, if you only want to specify the address in the
second form you may omit the rest of the parameters.

Default values and expected types for the parameters are as follows:

Parameter Type Default

address Expression, Address, or Symbol The address below where the comment is placed.

name String An empty string

condition Integer 1 (always break when breakpoint is encountered)

times Integer -1 (the breakpoint will never expire)

16

Watchpoints

To specify a watchpoint as a comment the syntax is very similar to that of a breakpoint.

;@watch target=address condition="0" name=label times=-1

;@watch target condition name times

The parameter condition is required omitting it will cause the watchpoint to never trigger

Default values and expected types for the parameters are as follows:

Parameter Type Default

target Address, Symbol, or Register The address below where the comment is placed.

condition Integer 0 (Watchpoint will never trigger)

name String An empty string

times Integer -1 (the watchpoint will never expire)

Blackboxes

And to specify blackboxes the syntax is again similar.

;@blackbox address=address name=label condition=1

;@blackbox address name condition

Default values and expected types for the parameters are as follows:

Parameter Type Default

target Address or Symbol The address below where the comment is placed.

name String An empty string

condition Integer 1 (You will always skip over the blackbox)

17

Subroutine Annotations

You can give the simulator more information about your subroutines (that follow the lc3 calling
convention) and this will improve the output of the view call stack function in complx (see Call Stack
Viewer).

The syntax for this is as follows:

;@subroutine address=address name=label num_params=0

;@subroutine address name num_params

Default values and expected types for the parameters are as follows:

Parameter Type Default

address Address or Symbol The address below where the comment is placed.

name String An empty string

num_params Integer 0 (Subroutine takes no parameters)

18

Plugins

And lastly you can extend the simulator and assembler through use of plugins. With plugins you may
add new devices, traps, and a new instruction for the LC-3.

To include a plugin with your assembly file the following syntax must be used

;@plugin filename=??? vector=??? address=??? interrupt=???

The arguments vary by plugin but for a minimum the filename must be given. For plugins introducing
new traps vector must be specified, it will be the entry in the trap vector table where the trap lives. For
plugins introducing devices address must be specified. This will be the address where the device
register lives. If the plugin generates interrupts then the interrupt parameter must be specified.

Parameter Type Description

filename Filename Must be specified. Name of file without extension and without lib in the
name. So a file named liblc3_udiv.so will be specified here as lc3_udiv

vector Address Address to install Trap plugin into trap vector table.

address Address Address where Device Register plugin will live.

interrupt Address If plugin generates interrupts the interrupt vector that is sent

19

Troubleshooting

Assembly File Errors

Syntax Error

“Syntax Error on line <lineno>: <line>”

This means that you did not follow the syntax for an instruction. Look in PattPatelAppA.pdf or
Appendix A of the text for the instruction format.

Orig/End Matchup

“No matching .end found on line <lineno> for <line>”

Means what it says for the .orig statement given you did not have a .end to matchup with it.

Orig overlap

“Code sections <section1> and <section2> overlap”

You have two .orig statements whose contents overlap with a another code section.

All .orig/.end pairs must be disjoint areas of memory.

Stray .end

“No matching .orig found for .end on line <lineno>”

You got one too many .ends in your file

Stray data

“Stray data found on line <lineno>: <line>"

Some data or instructions was found outside a .orig/.end block.

Undefined Symbol

"Undefined symbol <symbol> found on line <lineno>"

You are referring to a symbol that does not exist

20

Duplicate Symbol

"Duplicate symbol <symbol> found on line <lineno>"

You can't define a symbol twice. You have code somewhere of this form

MY_SYMBOL ADD R0, R0, R0

[code here]

MY_SYMBOL ADD R0, R0, R0

Created symbols must be unique

Multiple Symbol

"Multiple symbol <symbol1> and <symbol2> found for address <address> on line <lineno>"

You can't associate more than one symbol to an address. You have code of the form

HI

THERE ADD R0, R0, R0

HI and THERE will refer to the same address which is not allowed.

Invalid Symbol

"Invalid symbol <symbol> found on line <lineno>"

Symbols can only contain alphanumeric characters and _, must start with a letter, must be less than 20
characters, and can not be an instruction or register name.

Invalid Register
“Invalid Register <context>”

The LC3 only has 8 registers R0-R7.

Invalid Instruction

"Invalid instruction <context> found on line <lineno>"

21

Your opcode name was not correct, see the ISA document for valid instruction names.

Invalid Directive

"Invalid assembler directive <context> found on line <lineno>"

The valid assembler directives are .orig .end .blkw .fill .stringz

Invalid Flags

"Invalid condition code flags <flags> found on line <lineno>"

The flags for BR must be in the order nzp. N must come before Z which comes before P.

Invalid Character

"Invalid character constant found on line <lineno>: <line>"

You gave an invalid chracter that is you either did one of the following

'67' – The ' specifies a character and only one character must be contained in it unless you are using an
escape sequence, that is, '\n' is valid.

.fill “Hello World'. This is invalid .fill will expect a character as it is filling one location. If you want
to add a string then use .stringz

Invalid Number

"Found signed number expecting unsigned number on line <lineno>: <line>"

Example: You pass a negative number to .blkw or something like TRAP -3

Number Overflow

"<number> is too big for an immediate value expected <x> bits got <y> bits found on line <lineno>"

Sorry but you can't do things like ADD R0, R0, 105. Please reread the ISA document, ADD requires
the immediate value to fit in 5 bits and is a 2's complement number therefore -16 to 15 are valid values.

22

Offset Overflow

"<offset> is too far away for an offset expected <x> bits got <y> bits found on line <lineno>"

See above LD/LDI/ST/STI has a max of 9 bits LDR/STR has a max of 6 bits. You may want to
restructure your code.

And writing code like LD x3005 is just plain wrong, LD and friends work based on offsets not absolute
addressing

Memory Overflow

"Can't add by <num> found on line <lineno>"

Example

.orig xFFF0

.blkw 100

.end

No.

Scan Overflow

"I'm at the end of memory (xFFFF) and I refuse to wrap around! found on line <lineno>"

Example

.orig xFFFF

ADD R0, R0, R0

ADD R0, R0, R1

.end

Again No.

File Error

"Could not open <file> for reading\nAre you sure the file is in your current working directory?"

Means what it says, might want to use ls to see if your file you are trying to run is in the directory you
are in, if not then use cd to change the directory to where it is.

23

Unterminated String

"Unterminated string on line <lineno>: <line>"

Means what it says, you forgot a ' or “

Malformed String

"Malformed string on line <lineno>: <line>"

You either gave a string that had bad escape sequences, you did not enclose the string in “”'s. Be careful
with copying code from documents as the “”s are a different character.

Extra Input

"Extra input found at end of line <lineno>: <line>"

Means what it says, you can get this from specifying too many paramters to an instruction. Remove
them.

Plugin Failed to load

"Plugin <file> failed to load at line <lineno>”

The assembler could not find your plugin or it was unable to load it due to a difference in version or
some other error. Please see Plugins on how to specify this.

24

file:///data/projects/complx2/doc/complx-tools.odt#3.7.1.Plugins%7Coutline

Runtime Warning Messages

Reading beyond end of input. Halting

The LC3 ran out of input, you should never get this warning as the simulator will wait for your input.

Writing <data> to reserved memory at <address>

x0000-x2FFF and xFE00-xFFFF is considered reserved memory. In the first section the trap vector
table, interrupt vector table and lc3os code is located there. In the second is special device registers.

You are only allowed to write to the lower memory if you are in kernel mode (that is within a trap
handler).

You are only allowed to write to the higher memory if there exists a device there or you are in kernel
mode.

Reading from reserved memory at <address>

Same as above

Unsupported Trap <vector>. Assuming Halt

Your code executed a trap instruction that isn't one of the predefined traps or you are writing your own
trap and you did not enable true traps mode.

Unsupported Instruction <hex>. Halting

Your code executed data whose first four bits was 0xD for the invalid opcode instruction.

25

Malformed Instruction <hex>. Halting

You executed a bad instruction. The only way to get this warning message is if you execute data or
random memory addresses. Note that malformed instructions will appear in the simulator in the
instruction column followed by an asterisk.

For a complete enumeration of all instructions that this warning can be caused on is listed below.

instruction 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ADD 0 0 0 1 x x x x x x 0 0 0 x x x
AND 0 1 0 1 x x x x x x 0 0 0 x x x
BR 0 0 0 0 0 0 0 x x x x x x x x x
JMP 1 1 0 0 0 0 0 x x x 0 0 0 0 0 0
JSRR 0 1 0 0 0 0 0 x x x 0 0 0 0 0 0
NOT 1 0 0 1 x x x x x x 1 1 1 1 1 1
RTI 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TRAP 1 1 1 1 0 0 0 0 x x x x x x x x

Bits in shaded regions must be set to that bit pattern in order to be considered valid.

Note that all ADD/AND instructions with an immediate value are valid, since all bits are devoted to
expressing that form of instruction.

RTI executed in user mode. Halting.

Means what it says, your code executed data whose first four bits was 0x8 for RTI (return from
interrupt). This instruction can only be called within an interrupt handler.

Trying to write character x%04x

You are trying to write an invalid character (character > 255).

PUTS called with invalid address x%04x

See Reading from reserved memory.

26

Trying to write to the display when its not ready

You must poll the DSR before seeing if it is okay to write to the DDR.

Trying to read from the keyboard when its not ready

Same as above you must poll the KBSR before writing to KBDR

Turning off machine via the MCR register

Your code wrote to address xFFFE which is the MCR (Machine Control Register). This register can
only be written to in kernel mode and is responsible for the implementation of the HALT instruction.

27

	Overview
	Setup
	General Usage
	Assembly Files
	As2obj
	Complx
	Command line parameters
	Getting Started
	Interface tour
	Running Programs
	Debugging
	Other features of complx
	Console Input
	Memory View
	True Traps Mode
	Interrupts Mode
	Call Stack Viewer
	Expressions

	Assembly Files Extended
	Debugging Comments
	Subroutine Annotations
	Plugins

	Troubleshooting
	Assembly File Errors
	Runtime Warning Messages

