

Complx plugin system

Extending an imaginary machine

Overview

● You can extend complx with plugins written in
C++

● Add new devices (a screen, a clock, etc) new
instructions (only 1), and new trap subroutines,
extend the assembler (somewhat!) and much
more!

● Can use in assembly code with the ;@plugin
comment.

Architecture

complx lc3runner lc3test as2obj

liblc3.so

Instruction
Plugin

Device
Register
Plugin

Trap
Subroutine

Plugin

LC3 State
Instruction
Executor

Debugging
Info Assembler

Programs

Backend libraries

Third party

Three main types of plugins

● Instruction plugins modify the undefined/error
instruction in LC3 to make it do something else. Can
only have one in use at a time.

● Device Register plugins act as a new device register
any reads/writes to a specified memory address will
do whatever you want. Akin to KBSR, KBDR, DSR,
DDR, and MCR.

● Trap Subroutine plugins act as a new Trap anytime its
called it will do whatever you want. Akin to GETC,
OUT, IN, PUTS, PUTSP, and HALT

How to implement a plugin

● First derive a class from either Plugin, InstructionPlugin, DeviceRegisterPlugin,
or TrapSubroutinePlugin depending on functionality needed.

● Implement the functions desired, including all pure virtual functions.
● Next implement create_plugin of this signature

– Plugin* create_plugin(const PluginParams& params)

– Params will contain a map of all parameters passed in on creation (see lc3_params.hpp
for reading them in).

– Ensure that there is only one instance of any plugin created.

● And a corresponding destroy_plugin of this signature
– void destroy_plugin(Plugin* plugin)

– Handle freeing any additional memory used by your plugin

● Be sure to extern “C” the create/destroy plugin declarations to prevent C++'s
name mangling.

Compiling / Linking your plugin

● Must link with liblc3
● Simple makefile target

– libmyplugin.so : myplugin.o

g++ fPIC -Wall -shared -Wl,-soname,$@ $^ -o $@ -llc3

● Install it in /usr/lib or /usr/local/lib

Example Trap Plugin UDIV

● Specifications
– UDIV is a subroutine that performs division and modulus.

– Inputs R0 = n, R1 = d

– Outputs R0 = n / d, R1 = n % d

● Usage (creation)
– ;@plugin filename=lc3_udiv vector=x80

– 1 parameter where to put the trap vector.

Implementation of UDIV

● class and create/destroy plugin functions

class UdivPlugin : public TrapFunctionPlugin

{

 public:

 UdivPlugin(unsigned char vector);

 ~UdivPlugin();

 std::string GetTrapName() const;

 void OnExecute(lc3_state& state, lc3_state_change& changes);

};

extern "C" Plugin* create_plugin(const PluginParams& params);

extern "C" void destroy_plugin(Plugin* ptr);

Implementation of UDIV II

Plugin* create_plugin(const PluginParams& params)

{

 if (instance != NULL)

 return instance;

 unsigned char vector;

 if (!lc3_params_read_uchar(params, "vector", vector))

 {

 fprintf(stderr, "Vector param (vector) not given or in incorrect format: %s\n",
lc3_params_get_value(params, "vector").c_str());

 return NULL;

 }

 instance = new UdivPlugin(vector);

 return instance;

}

Ensure only one instance is created

Parameter handling

Creation successful

Implementation of UDIV III

void destroy_plugin(Plugin* ptr)

{

 if (ptr == instance)

 {

 delete instance;

 instance = NULL;

 }

}

Implementation of UDIV IV

● When the program is assembled whenever it
sees a comment with @plugin and the plugin is
findable in the path it searches for library files
(ex. /usr/lib, /usr/local/lib) it will load it and
immediately call create_plugin.

● If the return value is non null then it will query
the type of plugin and install it automatically
binding it to the trap vector, if it can not then it
will throw an error

Implementation of UDIV V

● UdivPlugin::UdivPlugin(unsigned char vector) :
TrapFunctionPlugin(UDIV_MAJOR_VERSION,
UDIV_MINOR_VERSION, "Division and Modulus
Trap", vector) {}

● UdivPlugin::~UdivPlugin() {}
● std::string UdivPlugin::GetTrapName() const

{

 return "UDIV";

}

Note to the assembler
Saying UDIV will now assemble

To a trap instruction with vector found in parameter

Implementation of UDIV VI
void UdivPlugin::OnExecute(lc3_state& state, lc3_state_change& changes)

{

 changes.changes = LC3_MULTI_CHANGE;

 changes.info.push_back((lc3_change_info) {true, 0, (unsigned short)state.regs[0]});

 changes.info.push_back((lc3_change_info) {true, 1, (unsigned short)state.regs[1]});

 short r0 = state.regs[0];

 short r1 = state.regs[1];

 if (r1 != 0)

 {

 state.regs[0] = r0 / r1;

 state.regs[1] = r0 % r1;

 }

 else

 {

 state.regs[0] = -1;

 state.regs[1] = -1;

 }

}

Being a good citizen
Saves state of things

That will change.

The core of the code

lc3_state_change an aside

● Trap and Instruction plugins must record the
values of everything that will change in the
change object

● This is to get back stepping working, without this
code the lc3 may not be able to get into its
previous state when the back step button is
used.

● Do not worry about saving PC, R7, or NZP bits
they are automatically saved.

lc3 state change an aside.
enum lc3_change_t
{
 LC3_NO_CHANGE = 0,
 LC3_REGISTER_CHANGE = 1,
 LC3_MEMORY_CHANGE = 2,
 LC3_MULTI_CHANGE = 3, // Multiple registers / memory addresses or both have changed. For plugins.
 LC3_SUBROUTINE_BEGIN = 4,
 LC3_SUBROUTINE_END = 5,
 LC3_INTERRUPT_BEGIN = 6, // Signals begin of interrupt can't backstep past this. (this will be in the undo stack while the interrupt is handled)
 LC3_INTERRUPT_END = 7, // Signals end of interrupt (this will never be in the undo stack)
 LC3_INTERRUPT = 8, // Signals a processed interrupt. (LC3_INTERRUPT_BEGIN changes to this after its processed.
};

typedef struct lc3_state_change
{
 unsigned short pc;
 short r7; /* In the case of fake traps two registers can be modified. So we have a special place for r7*/
 unsigned char n:1;
 unsigned char z:1;
 unsigned char p:1;
 unsigned char halted:1;
 unsigned char changes:4;
 unsigned short location;
 unsigned short value;
 unsigned int warnings;
 unsigned int executions; // Only used for changes = LC3_INTERRUPT(_BEGIN) otherwise we know its changed by 1.
 lc3_subroutine_call subroutine; // Only used for changes = LC3_SUBROUTINE_*
 std::vector<lc3_change_info> info; // Only used for changes = LC3_MULTI_CHANGE
} lc3_state_change;

Test program for UDIV

;@plugin filename=lc3_udiv vector=x80

.orig x3000

LD R0, A

LD R1, B

udiv ; or trap x80

HALT

A .fill 2000

B .fill 8

.end

Plugin is called here

Examples

● Device register plugin → Random Number
generator lc3_plugins/random.cpp

● Trap subroutine plugin → UDIV
lc3_plugins/udiv.cpp

● Instruction plugin → Multiply Instruction
lc3_plugins/multiply.cpp

● Custom plugin → BWLCD / ColorLCD
lc3_plugins/bwlcd.cpp lc3_plugins/colorlcd.cpp

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

