PyHDX Documentation
Release 0.2.2

Jochem Smit

Oct 19, 2020

PyHDX

1.1 Web Application . . .
Installation

2.1 Stablerelease
2.2 Fromsources
2.3 Dependencies
Fitting

3.1 Overfitting
3.2 Non-identifyability . .
Examples

4.1 pyHDX basics
4.2 Under construction . .
43 Fitting.
Module Documentation

51 Models
5.2 Fitting.
5.3 Fitting TensorFlow . .
54 FielO.........
5.5 Output
5.6 Support
Web Application

6.1 Main Application . . .
6.2 Single Classification .
6.3 Binary Comparison . .
Contributing

7.1 Types of Contributions
7.2 GetStarted!
7.3 Pull Request Guidelines
74 Tips..........
7.5 Deploying
Credits

8.1 Development Lead . .
8.2 Contributors

CONTENTS:

—

wn AW W W

W

31
31
36
39

43
43
44
45
45
45

9 History
9.1 0.1.0 (2019-09-06)

10 Indices and tables
Python Module Index

Index

49
49

51

53

55

CHAPTER
ONE

PYHDX

PyHDX is python project which can be used to derive Gibbs free energy and Protection Factors from HDX-MS data.
Currently the project is functional but in beta. Please refer to docs/installation.rst for installation instructions.

Preliminary Documentation

1.1 Web Application

A beta version of the web application is available for testing: http://pyhdx.jhsmit.org/main
A test file can be downloaded from here. (right click, save as)

Two other web applications are available. To upload fitting results from the main application and vizualize: http://pyhdx.
jhsmit.org/single

To upload multiple fitting result datasets and compare and vizualize: http://pyhdx.jhsmit.org/diff

https://raw.githubusercontent.com/Jhsmit/PyHDX/master/docs/_build/latex/pyhdx.pdf
http://pyhdx.jhsmit.org/main
https://raw.githubusercontent.com/Jhsmit/PyHDX/master/tests/test_data/ecSecB_apo.csv
http://pyhdx.jhsmit.org/single
http://pyhdx.jhsmit.org/single
http://pyhdx.jhsmit.org/diff

PyHDX Documentation, Release 0.2.2

2 Chapter 1. PyHDX

CHAPTER
TWO

INSTALLATION

2.1 Stable release

(Currently no stable release available. This section will updated soon)

To install PyHDX, run this command in your terminal:

$ pip install pyhdx

This is the preferred method to install PyHDX, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

2.2 From sources

The sources for PyHDX can be downloaded from the Github repo.

You can either clone the public repository:

’$ git clone git://github.com/Jhsmit/pyhdx

Or download the tarball:

’$ curl -OL https://github.com/Jhsmit/pyhdx/tarball/master

pyHDX can then be installed with conda (requires conda build):

’$ conda develop pyhdx

or pip:

’$ pip install pyhdx

To launch the web application:

’$ panel serve panel/main.py

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/Jhsmit/pyhdx
https://github.com/Jhsmit/pyhdx/tarball/master

PyHDX Documentation, Release 0.2.2

2.3 Dependencies

The requirements for PyHDX are listed in requirements.txt and can be installed from either pip or conda, with the excep-
tion of expfact. This is a GPL package and at the moments it is recommended to manually install this by downloading the
constants.py and kint.py files from expfact/python directory on the GitHub repository and placing them in pyhdx/expfact

4 Chapter 2. Installation

https://github.com/skinnersp/exPfact.git

CHAPTER
THREE

FITTING

The main feature of pyHDX is the fitting of rate equations describing deuterium uptake to a Kinetic series of measured
peptides each covering a section of residues with a corresponding amount of deuterium uptake per peptide-timepoint.

3.1 Overfitting

Overfitting occurs when more parameters are added to the model but the supplied data has insufficient independent dat-
apoints to be able to accurately and uniquely determine the value of these parameters. Typical signs of overfitting are
large variations along residues in the obtained rates, such as for residue 43 in Figure Fig. 3.1.

$decsssss’ v
0t PRI LR RS I33eee

Ty
LR R XN v sesss

Fig. 3.1: XX not really a great example of overfitting

To determine if overfitting has occurs, the number of fitting parameters should be varied while checking the effect of
adding and removing fit parameters againts goodness-of-fit parameters. This is a laborious and time consuming process
and further streamlining and automating this process is planned to be part of a future release.

In the current implementation, fitting accuracy and residue resolution is sacrificed in order to make sure overfitting is
unlikely. Block size is increased and the number of exchange rate time constants is limited to 2. The downside of this
approach is that the fits can be poor in the case of residues exchanging with more than two distinct rate constants per
block, or that features consisting of only several residues can be missed. Examples of how to customize the defintion of
fitting blocks can be found in the examples section.

3.2 Non-identifyability

Consider a block of 5 amino acids which all exchange deuterium with very distinct exchange rates and a set of measure-
ments where the timepoints sufficiently cover these exchange rates. In this scenario, although its possible to extract all 5
kinetic rates by fitting the uptake curve, it is impossible to assign these kinetics rates to individual amino acids. This is
referred to as the non-identifyability issue (XX REF) and this can only be overcome by increasing the number of peptides
such that each amino acid occurs in a unique set of peptides.

PyHDX Documentation, Release 0.2.2

6 Chapter 3. Fitting

[12]:

[12]:

[17]:

CHAPTER
FOUR

EXAMPLES

4.1 pyHDX basics

from pyhdx import PeptideMasterTable, read_dynamx
from pathlib import Path

We can use the read_dynamx function to read the file. This function returns a numpy structured array where each
entry corresponds to one peptide, in this example 567 peptides.

fpath = Path() / '..' / '..' / 'tests' / 'test_data' / 'ecSecB_apo.csv'
data = read_dynamx (fpath)

len (data)

567

This array is loaded into the PeptideMasterTable class, which is the main data entry class. By specifying
drop_first the number of n-terminal residues to remove can be changed and with ignore_prolines prolines
residues, which do not have exchanging amide hydrogens, can be ignored.

: master_table = PeptideMasterTable (data, drop_first=1, ignore_prolines=True)

This master table allows us to control how the deuterium uptake content is determined. The method set_control can
be used to choose which set of peptides is used as the fully deuterated (FD) control. This adds a new field called ‘uptake’
which is the normalized (to 100%) deuterium uptake of each peptide.

master_table.set_control (('Full deuteration control', 0.167))

master_table.data['uptake'] [:50]

array ([O. , 0. , 5.0734 , 2.486444, 2.857141, 3.145738,
3.785886, 4.08295 , 4.790625, 0. , 0. , 3.642506,
1.651437, 1.860919, 2.107151, 2.698036, 2.874801, 3.449561,
0. , O. , 5.264543, 1.839924, 2.508343, 2.969332,
3.399092, 3.485568, 4.318144, 0. , 0. , 6.3179 ,
2.532099, 3.306167, 3.996718, 4.38941 , 4.379495, 5.283969,
0. , O. , 6.812215, 3.11985 , 3.874881, 4.342807,
4.854057, 4.835639, 5.780219, 0. , 0. , 10.8151 ,
5.432395, 6.1318 1)

Next we’ll split the data and group them by their different states. This returns a dictionary where the values are all peptides
for a given state. The peptides for each state are grouped by their exposure time, forming a KineticSeries object

states = master_table.groupby_state ()
for key, value in states.items():
print (key, value)

[21]:

[21]:

PyHDX Documentation, Release 0.2.2

Full deuteration control <pyhdx.models.KineticsSeries object at 0x0000014774911FC8>
SecB WT apo <pyhdx.models.KineticsSeries object at 0x000001477428F908>

series = states['SecB WT apo']
type (series), len(series), series.timepoints

dict_keys(['Full deuteration control', 'SecB WT apo'])

Iterating over a KineticSeries object returns a set of Pept ideMeasurements each with their own attributes
describing the topology of the coverage. When all PeptideMeasurements in the series have identical coverage,
the series is said to be uni form, which can be checked by the uni form property. Series can be made uniform by
default, removing peptides which are not found in all timepoints. KineticsSeries are required to be uniform before
fitting them.

print (series.uniform)
series.make_uniform() # This series already is uniform

4.2 Under construction

Topics:

X matrix

removing prolines and n terminal resiudes
r number vector

weighted averaged scores

splitting series

FH H H HFH R W

4.3 Fitting

smatplotlib gt

import matplotlib.pyplot as plt

from pyhdx import PeptideMasterTable, read_dynamx, KineticsFitting
from pathlib import Path

import numpy as np

import pyhdx
print (pyhdx.__file)
pyhdx.__git_sha___

C:\Users\jhsmi\pp\PyHDX\pyhdx__init__ .py
'2£15024d"

We load the sample SecB dataset, apply the control, and split the dataset into KineticSeries.

fpath = Path() / '..'" / '"..' / 'tests' / 'test_data' / 'ecSecB_apo.csv'
data = read_dynamx (fpath)
master_table = PeptideMasterTable (data, drop_first=1, ignore_prolines=True)
(continues on next page)

8 Chapter 4. Examples

PyHDX Documentation, Release 0.2.2

(continued from previous page)

master_table.set_control (('Full deuteration control', 0.167))
states = master_table.groupby_state ()

series = states['SecB WT apo']

series.make_uniform()

From this KineticsSeries object we can make a KineticsFitting object. The bounds parameter defines
the upper and lower limit of the kinetic rates which are fitted. Temperature (in Kelvin) and pH of the D-labelling step
are used to calculate the intrinsic D-exchange rate.

kf = KineticsFitting(series, bounds=(le-2, 300), temperature=303.15, pH=8.)

We can now start the first step of fitting, by weighted averaging. The Runt imeWarning messages are normal and can
be ignored.

result_wt_avg = kf.weighted_avg_fit ()

C:\Users\jhsmi\Miniconda3\envs\py37_panel_dev\lib\site-packages\symfit\core\
—objectives.py:321: RuntimeWarning: overflow encountered in square
(dep_var_value - dep_data) ** 2 / sigma ** 2
<string>:2: RuntimeWarning: overflow encountered in exp
C:\Users\jhsmi\Miniconda3\envs\py37_panel_dev\lib\site-packages\scipy\optimize\
—optimize.py:2116: RuntimeWarning: invalid value encountered in double_scalars
tmp2 = (x — v) * (fx - fw)
C:\Users\jhsmi\Miniconda3\envs\py37_panel_dev\lib\site-packages\scipy\optimize\
—minpack.py:175: RuntimeWarning: The iteration is not making good progress, as.
—measured by the
improvement from the last ten iterations.
warnings.warn (msg, RuntimeWarning)
<string>:2: RuntimeWarning: overflow encountered in exp
<string>:2: RuntimeWarning: overflow encountered in exp
<string>:2: RuntimeWarning: invalid value encountered in subtract

The return value is a KineticsFitResult object. This object has a list of models, intervals in withing the protein
sequence to which these models apply, and their corresponding symfit fit result with parameter values. The effective
exchange rate can be extracted, as well as other fit parameters, from this object:

output = result_wt_avg.output
output .dtype.names

('r_number', 'rate', 'k1', 'k2', 'r'")

fig, ax = plt.subplots()

ax.set_yscale('log")
ax.scatter (output ['r_number'], output['rate'l])
ax.set_xlabel ('"Residue number')

ax.set_ylabel ('Rate (min~*')'")

None

We can now use the weighted averaging fitted result as initial guesses for the global fitting step. This returns a TFFitRe—
sult object, which has only one interval and model.

result_global = kf.global_fit (output)

We can obtain protection factors and AG values from the result. The protection factors are in log (base 10) format.

4.3. Fitting 9

PyHDX Documentation, Release 0.2.2

: tf_output = result_global.output

print (tf_output.dtype.names)
deltaG = 8.3*303.15* (tf_output['log P'] / np.logl0 (np.e))

('"r_number', 'log_P_full', 'log_P'")

fig, ax = plt.subplots()

#ax.set_yscale('log')

ax.scatter (tf_output['r_number'], deltaG*le-3)
ax.set_xlabel ('"Residue number')
ax.set_ylabel ('AG (kJ/mol) ")

None

0.0 1 q -
27.5 1
25.0 1

22.5 1 -

AG (Kk)fmol)

1759 -
15.0 1

m— .
12.5 1 = e

10.0 1 —_—

T T T
20 40 &0 an 100 120 140 160
Residue number

10 Chapter 4. Examples

CHAPTER
FIVE

MODULE DOCUMENTATION

This page contains the full API docs of PyHDX

5.1 Models

class pyhdx.models.Coverage (data, c_term=None)
Object describing layout and coverage of peptides and generating the corresponding matrices. Peptides should all
belong to the same state and have the same exposure time.

Parameters
data [~class:~numpy.ndarray] Numpy structured array with input peptides
Attributes

X [ndarray] N x M matrix where N is the number of peptides and M equal to prot_len. Values
are 1/(ex_residues) where there is coverage.

Z [ndarray] N x M matrix where N is the number of peptides and M equal to proz_len. Values
are 1/(ex_residues) where there is coverage, #todo account for prolines: so that rows sum to 1
is currently not true

Methods

apply_interval(array_or_series) Given an array or series with a length equal to the full
protein, returns the section of the array equal to the
covered region.

get_sections([gap_size]) get the intervals of sections of coverage intervals are
inclusive, exclusive

property X_norm

ndarray: X coefficient matrix normalized column wise.
property Z_norm

ndarray: Z coefficient matrix normalized column wise.
apply_interval (array_or_series)

Given an array or series with a length equal to the full protein, returns the section of the array equal to the
covered region. Returned series length is equal to number of colunms in the X matrix

property block_length
ndarary: Lengths of unique blocks of residues in the peptides map, along the r_number axis

11

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

PyHDX Documentation, Release 0.2.2

get_sections (gap_size=- 1)
get the intervals of sections of coverage intervals are inclusive, exclusive
gap_size: int

Gaps of this size between adjacent peptides is not considered to overlap. A value of -1 means that peptides
with exactly zero overlap are separated. With gap_size=0 peptides with exactly zero overlap are not separated,
and larger values tolerate larger gap sizes.

property r_number
:class:”~np.ndarray: Array of residue numbers corresponding to the part of the protein covered by peptides

class pyhdx.models.KineticsSeries (data, **metadata)

A series of PeptideMeasurements which correspond to the same state but with different exposures.
Parameters

data [ndarray or 1ist] Numpy structured array with peptide entries corresponding to a single
state, or list of PeptideMeasurements

make_uniform [bool]If True the KineticSeries instance is made uniform

**metadata Dictionary of optional metadata. By default, holds the temperature and pH parame-
ters.

Attributes
state [str] State of the kinetic series
timepoints [ndarray] Array with exposure times (sorted)
peptides: :obj:'list™ List of Pept ideMeasurement s, one list element per timepoint.

cov: :class:’~pyhdx.models.Coverage® Coverage object describing peptide layout. When this
uniform is False, this attribute is None

property full_data
returns the full dataset of all timepoints

property scores_stack
uptake scores to fit in a 2d stack

property uptake_corrected
matrix shape N_t, N_p

class pyhdx.models.PeptideMasterTable (data, drop_first=1, ignore_prolines=True,

d_percentage=100.0, sort=True, remove_nan="True)
Main peptide input object. The input numpy structured array data must have the following entires for each peptide:

start: Residue number of the first amino acid in the peptide end: Residue number of the last amino acid in the
peptide (inclusive) sequence: Amino acid sequence of the peptide (one letter code) exposure: Typically the time
the sample was exposed to a deuterated solution. This can correspond to other times if

the kinetics of the experiment are set up differently

state: String describing to which state (experimental conditions) the peptide belongs uptake: Number of deuteriums
the peptide has taken up

The following fields are added to the data array upon initialization:

_start: Unmodified copy of initial start field _end: Unmodified copy of initial end field _sequence: Unmodified copy
of initial sequence ex_residues: Number of residues that undergo deuterium exchange. This number is calculated
using the drop_first and

ignore_prolines parameters

12

Chapter 5. Module Documentation

https://docs.python.org/2/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

PyHDX Documentation, Release 0.2.2

N-terminal residues which are removed because they are either within drop_first or they are N-terminal prolines
are marked with X’ in the sequence field. Prolines which are removed because they are in the middle of a peptide
are marked with a lower case ‘p’ in the sequence field.

The field scores is used in calculating exchange rates and can be set by either the set_backexchange or set_control
methods.

Parameters
data [~:class:np.ndarray] Numpy recarray with peptide entries.
drop_first [int] Number of N-terminal amino acids to ignore. Default is 1.
d_percentage [f1oat] Percentage of deuterium in the labelling solution.

ignore_prolines: :0bj:"bool" Boolean to toggle ignoring of proline residues. When True these
residues are treated as if they’re not present in the protein.

sort: :obj:"bool” Set to True to sort the input. Sort order is ‘start’, ‘end’, ‘sequence’, ‘exposure’,
‘state’.

remove_nan: :obj bool" Set to True to remove NaN entries in uptake
Attributes
exposures
~classs:np.ndarray Array with unique exposures
states

~classs:np.ndarray Array with unique states

Methods

get_dat a(state, exposure) Get all peptides matching state and exposure.

groupby_state() Groups measurements in the dataset by state and re-
turns them in a dictionary as a KineticSeries.

isin_by_ idx(array, test_array) Checks if entries in array are in test_array, by start
and end field values.

set_backexchange(back_exchange) Sets the normalized percentage of uptake through a
fixed backexchange value for all peptides.

set_control(control_100[, control_0]) Apply a control dataset to this object.

| return_by_name | |

property exposures
~classs:np.ndarray Array with unique exposures

get_data (state, exposure)
Get all peptides matching state and exposure.

Parameters
state [str] Measurement state
exposure [float] Measurement exposure time

Returns

5.1.

Models 13

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#float

PyHDX Documentation, Release 0.2.2

output_data [ndarray] Numpy structured array with selected peptides

groupby_state ()
Groups measurements in the dataset by state and returns them in a dictionary as a KineticSeries.

Returns

out [dict] Dictionary where keys are state names and values are KineticSeries

static isin_by_idx (array, test_array)
Checks if entries in array are in fest_array, by start and end field values.

Parameters
array [ndarray] Numpy input structured array
test_array [ndarray] Numpy structured array to test againts

Returns

isin: ndarray, bool Boolean array of the same shape as array where entries are True if they
are in test_array

set_backexchange (back_exchange)
Sets the normalized percentage of uptake through a fixed backexchange value for all peptides.

Parameters

back_exchange [obj :float:] Percentage of back exchange

set_control (control_100, control_O0=None)
Apply a control dataset to this object. A scores attribute is added to the object by normalizing its uptake value
with respect to the control uptake value to 100%. Entries which are in the measurement and not in the control
or vice versa are deleted. Optionally, control_zero can be specified which is a dataset whose uptake

value will be used to zero the uptake.
#todo insert math

Parameters

control_100 [tuple] tuple with (state, exposure) for peptides to use for normalization to 100%
Numpy structured array with control peptides to use for normalization to 100%

control_0 [tuple, optional] tuple with (state, exposure) for peptides to use for zeroing uptake
values to 100%

property states
~classs:np.ndarray Array with unique states

class pyhdx.models.PeptideMeasurements (data)
Class with subset of peptides corresponding to only one state and exposure

Parameters
data [:class’~numpy.ndarray’] Numpy structured array with input data

scores [ndarray] Array with D/H uptake scores, typically in percentages or absolute uptake
numbers.

Attributes
start [int] First peptide starts at this residue number (starting from 1)

stop [int] Last peptide ends at this residue number (incusive)

14 Chapter 5. Module Documentation

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/2/library/stdtypes.html#dict
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int

PyHDX Documentation, Release 0.2.2

prot_len [int] Total number of residues in this set of peptides, not taking regions of no coverage
into account.

exposure [float] Exposure time of this set of peptides (minutes)
state [string] State describing the experiment

bigX

X

properties:

big_x_norm

X_norm

scores nnls

scores Isq

Methods

calc_scores(residue_scores) Calculates uptake scores per peptide given an array of
individual residue scores

calc_scores (residue_scores)
Calculates uptake scores per peptide given an array of individual residue scores

Parameters

residue_scores [ndarray] Array of scores per residue of length proz_len
Returns

scores [:class’~numpy.ndarray’] Array of scores per peptide

class pyhdx.models.Protein (data, index, **metadata)
Object describing a protein

Parameters
data [ndarray or ?] data object to initiate the protein object from
index: :obj: str’ Name of the column with the residue number (index column)
**metadata Dictionary of optional metadata.

Attributes

c_term

5.1. Models 15

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/string.html#module-string
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

PyHDX Documentation, Release 0.2.2

Methods
Jjoin(other[, on, how, Isuffix, rsuffix, sort]) Metadata is merged (overlapping values are taken from
other)
set_k_ int(temperature, pH) Calculates the intrinsic rate of the sequence.
to_ file(file_path[, include_version, ...]) ‘Write Protein data to file.
to_stringio([io, include_version, ...]) Write Protein data to St ringIO

add_column
append
concat
merge
to_records

join (other, on=None, how='"left', Isuffix="", rsuffix=", sort=False)
Metadata is merged (overlapping values are taken from other)

Parameters
other
on
how
Isuffix
rsuffix
sort

set_k_int (temperature, pH)
Calculates the intrinsic rate of the sequence. Values of no coverage or prolines are assigned a value of -1 The
rates run are for the first residue (1) up to the last residue that is covered by peptides

When the previous residue is unknown the current residue is also assigned a value of -1.g
Parameters
temperature: [f1oat] Temperature of the labelling reaction (Kelvin)
pH [float] pH of the labelling reaction
Returns
k_int [~class:~numpy.ndarray] Array of intrisic exchange rates

to_f£file (file_path, include_version=True, include_metadata="True)
Write Protein data to file.

Parameters
file_path [st r] File path to create and write to.
include_version [:obj'bool’] Set True to include PyHDX version and current time/date
include_metadata Not Implemented

Returns

None

16 Chapter 5. Module Documentation

https://docs.python.org/2/library/io.html#io.StringIO
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#str

PyHDX Documentation, Release 0.2.2

to_stringio (io=None, include_version=True, include_metadata=True)
Write Protein data to StringIO

Parameters
io [StringIO, optional] StringlO to write to. If None a new StringlO object is created.
include_version [bool] Set True to include PyHDX version and current time/date
include_metadata Not Implemented

Returns
io [StringIO]

pyhdx.models.contiguous_regions (condition)
Finds contiguous True regions of the boolean array “condition”. Returns a 2D array where the first column is the
start index of the region and the second column is the end index.

5.2 Fitting

class pyhdx.fitting.EmptyResult (chi_squared, params)
Attributes
chi_squared Alias for field number 0
params Alias for field number 1

property chi_squared
Alias for field number 0

property params
Alias for field number 1

class pyhdx.fitting.KineticsFitResult (series, intervals, results, models)
this fit results is only for wt avg fitting

Attributes
model_type
output
rate Returns an array with the exchange rates

tau Returns an array with the exchange rates

Methods

__call__ (timepoints) call the result with timepoints to get fitted uptake per
peptide back

get_d(t) calculate d at timepoint t only for Isgkinetics (refactor
glocal) type fitting results (scores per peptide)

get_p(t) Calculate P at timepoint t.

get_param(name) Get an array of parameter with name name from the
fit result.

5.2. Fitting 17

https://docs.python.org/2/library/io.html#io.StringIO
https://docs.python.org/2/library/io.html#io.StringIO
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/io.html#io.StringIO

PyHDX Documentation, Release 0.2.2

get_output [|

get_d (r)
calculate d at timepoint t only for Isqkinetics (refactor glocal) type fitting results (scores per peptide)

get_p (1)
Calculate P at timepoint t. Only for wt average type fitting results

get_param (name)
Get an array of parameter with name name from the fit result. The length of the array is equal to the number
of amino acids.

Parameters

name [str] Name of the parameter to extract
Returns

par_arr [ndarray] Array with parameter values

property rate
Returns an array with the exchange rates

property tau
Returns an array with the exchange rates

class pyhdx.fitting.KineticsModel (bounds)
Base class for kinetics models. Main function is to generate symfit Variables and Parameters. The class attributes
par_index and var_index are used to make sure names used by symfit are unique and their mapping to user-defined
names are stored in the names dictionary.

Parameters
bounds [tuple] Tuple of default min, max parameters to use.
Attributes
names [dict] Dictionary which maps human-readable names (keys) to dummy names (values)

sf_model [Model] The symfit model which describes this model. Implemented by subclasses.

Methods
get_parameter(name) Get the parameter with the Human-readable name
name
make_parameter(namel[, value, min, max]) Create a new :class:~symfit.Parameter.
make_variable(name) Create a new :class:~symfit. Variable.

get_parameter (name)
Get the parameter with the Human-readable name name

Parameters

name [str] Name of the parameter to retrieve
Returns

parameter [Parameter]

make_parameter (name, value=None, min=None, max=None)

18 Chapter 5. Module Documentation

https://docs.python.org/2/library/functions.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/2/library/functions.html#tuple
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#str

PyHDX Documentation, Release 0.2.2

Create a new :class:~symfit.Parameter.
Parameters
name: :obj:"str” Human-readable name for the parameter
value: :obj: float™ Initial guess value
min: :obj: float” Lower bound value. If None, the value from bounds is used.
max: :obj: float” Lower bound value. If None, the value from bounds is used.
Returns
p [Parameter]

make_variable (name)
Create a new :class:~symfit. Variable.

Parameters

name: :obj: str" Human-readable name for the variable
Returns

p [Variable]

property r_names
dict: Reverse dictionary of the variable and parameter names

class pyhdx.fitting.LSQKinetics (initial_result, k_series, blocks, bounds, model_type='association’)

Methods
__call__(t, **params) returns the callled model at time t for params, returns
uptake values of peptides
get_param_values(name, **params) returns a list of parameters with name name which
should have been indexed parameters params repeat
during blocks
get_rate(**params)
Parameters
get_tau(**params)
Parameters

min_func | |

get_param_values (name, **params)
returns a list of parameters with name name which should have been indexed parameters params repeat during
blocks

get_rate (**params)
Parameters
params
key value where keys are the dummy names

get_tau (**params)

5.2. Fitting 19

https://docs.python.org/2/library/stdtypes.html#dict

PyHDX Documentation, Release 0.2.2

Parameters
params
key value where keys are the dummy names

class pyhdx.fitting.OneComponentAssociationModel (bounds)
One component Association

Methods
__call__(t, **params) call model at time t, returns uptake values of peptides
initial_guess(t, d) Calculates initial guesses for fitting of two-component

kinetic uptake reaction

get_rate
get_tau

initial_guess (t,d)
Calculates initial guesses for fitting of two-component kinetic uptake reaction

Parameters
t [:class:~'numpy.ndarray’] Array with time points
d [:class:~'numpy.ndarray’] Array with uptake values

class pyhdx.fitting.OneComponentDissociationModel (bounds)
One component Association

Methods
__call__(t, **params) call model at time t, returns uptake values of peptides
initial_ guess(t, d) Calculates initial guesses for fitting of two-component

kinetic uptake reaction

get_rate
get_tau

initial_guess (1, d)
Calculates initial guesses for fitting of two-component kinetic uptake reaction

Parameters
t [:class:~'numpy.ndarray’] Array with time points
d [:class:~'numpy.ndarray’] Array with uptake values

class pyhdx.fitting.SingleKineticModel (bounds)
Base class for models which fit only a single set (slice) of time, uptake points

class pyhdx.fitting.TwoComponentAssociationModel (bounds)
Two componenent Association

20 Chapter 5. Module Documentation

PyHDX Documentation, Release 0.2.2

Methods

__call__ (t, **params)

call model at time t, returns uptake values of peptides

get_rate(**params)

Parameters

get_ tau(**params)

Parameters

initial_guess(t, d)

Calculates initial guesses for fitting of two-component
kinetic uptake reaction

get_rate (**params)
Parameters

params

initial_grid

min_func

key value where keys are the dummy names

get_tau (**params)
Parameters

params

key value where keys are the dummy names

initial_guess (f,d)

Calculates initial guesses for fitting of two-component kinetic uptake reaction

Parameters

t [:class:~'numpy.ndarray’] Array with time points

d [:class:~'numpy.ndarray’] Array with uptake values

class pyhdx.fitting.TwoComponentDissociationModel (bounds)

Two componenent Association

Methods

__call__(t, **params)

call model at time t, returns uptake values of peptides

get_rate(¥**params)

Parameters

get_tau(**params)

Parameters

initial_guess(t,d)

Calculates initial guesses for fitting of two-component
kinetic uptake reaction

5.2. Fitting

21

PyHDX Documentation, Release 0.2.2

initial_grid
min_func

get_rate (**params)
Parameters
params
key value where keys are the dummy names
get_tau (**params)
Parameters
params
key value where keys are the dummy names

initial_guess (¢, d)
Calculates initial guesses for fitting of two-component kinetic uptake reaction

Parameters
t [:class:~'numpy.ndarray’] Array with time points
d [:class:~'numpy.ndarray’] Array with uptake values

pyhdx.fitting.£fit_kinetics (t, d, model, chisq_thd)
Fit time kinetics with two time components and corresponding relative amplitude.

Parameters
t [ndarray] Array of time points
d [ndarray] Array of uptake values

chisq_thd: :obj:*float™ Threshold chi squared above which the fitting is repeated with the Dif-
ferential Evolution algorithm.

Returns
res [FitResults] Symfit fitresults object.

pyhdx.fitting.func_long_ass (k, t, A, kI)
Function to estimate the short time component

Parameters
k [float]rate
tt [f1oat] Selected time point
A [float] Target amplitude
k1: [obj:float] Rate of fast time component
Returns
A_t [float] Amplitude difference given tau, tt, A, taul

pyhdx.fitting.func_long_dis (k, 1, A, kI)
Function to estimate the short time component

Parameters

k [float]rate

22 Chapter 5. Module Documentation

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float

PyHDX Documentation, Release 0.2.2

tt [f1loat] Selected time point
A [float] Target amplitude
k1: [obj:float] Rate of fast time component
Returns
A_t [f1loat] Amplitude difference given tau, tt, A, taul

pyhdx.fitting.func_short_ass (k, 1, A)
Function to estimate the fast time component

Parameters
k [float] Lifetime
tt [f1oat] Selected time point
A [float] Target amplitude
Returns
A_t [float] Amplitude difference given tau, tt, A

pyhdx.fitting.func_short_dis (k, #, A)
Function to estimate the fast time component

Parameters
k [float] Lifetime
tt [f1oat] Selected time point
A [float] Target amplitude
Returns

A_t [float] Amplitude difference given tau, tt, A

5.3 Fitting TensorFlow

class pyhdx.fitting_tf.Between (min_value, max_value)
Interval parameter constraint.

Constrains the values of parameters to the interval [min_value, max_value].

Parameters

min_value: :obj: float™ Lower bound for the allowed interval (optional None).

max_value: :obj:"float” Upper bound for the allowed interval (optional None).

5.3. Fitting TensorFlow

23

https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float

PyHDX Documentation, Release 0.2.2

Methods

_call__(w) Call self as a function.

[get_config | |

class pyhdx.fitting_tf.CurveFit (params, function, **kwargs)

Methods
build(input_shape) Creates the variables of the layer (optional, for sub-
class implementers).
call(inputs, **kwargs) This is where the layer’s logic lives.
compute_output_shape(input_shape) Computes the output shape of the layer.

build (input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation
step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.
Arguments:

input_shape: Instance of TensorShape, or list of instances of TensorShape if the layer expects a list
of inputs (one instance per input).

call (inputs, **kwargs)
This is where the layer’s logic lives.

Arguments: inputs: Input tensor, or list/tuple of input tensors. **kwargs: Additional keyword arguments.
Returns: A tensor or list/tuple of tensors.

compute_output_shape (input_shape)
Computes the output shape of the layer.

If the layer has not been built, this method will call build on the layer. This assumes that the layer will later
be used with inputs that match the input shape provided here.

Arguments:

input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the
layer). Shape tuples can include None for free dimensions, instead of an integer.

Returns: An input shape tuple.

class pyhdx.fitting tf.Ll1L2Differential (//=0.0,[2=0.0)
A regularized that applies and L1 or L2 regularization penalty to the differential of a parameter vector.

Parameters
11: :obj: float” L1 regularization factor

12: :obj:*float” L2 regularization factor

24 Chapter 5. Module Documentation

PyHDX Documentation, Release 0.2.2

Methods
__call_ (x) Compute a regularization penalty from an input tensor.
get_config() Returns the config of the regularizer.

get_config()
Returns the config of the regularizer.

An regularizer config is a Python dictionary (serializable) containing all configuration parameters of the reg-
ularizer. The same regularizer can be reinstantiated later (without any saved state) from this configuration.

This method is optional if you are just training and executing models, exporting to and from SavedModels,
or using weight checkpoints.

This method is required for Keras model_to_estimator, saving and loading models to HDF5 formats, Keras
model cloning, some visualization utilities, and exporting models to and from JSON.

Returns: Python dictionary.

class pyhdx.fitting_tf.LossHistory (verbose=False)

Methods

on_epoch_end(epoch[, logs]) Called at the end of an epoch.

on_epoch_end (epoch, logs=None)
Called at the end of an epoch.

Subclasses should override for any actions to run. This function should only be called during TRAIN mode.
Arguments: epoch: integer, index of epoch. logs: dict, metric results for this training epoch, and for the
validation epoch if validation is performed. Validation result keys are prefixed with val_.

class pyhdx.fitting_tf.NaNMeanSquaredError (reduction="'auto', name=None)
MSE which ignores nan entries

Parameters

y_true:

Methods

call(y_true,y_pred) Invokes the Loss instance.

call (y_true, y_pred)
Invokes the Loss instance.

Args: y_true: Ground truth values, with the same shape as ‘y_pred’. y_pred: The predicted values.
class pyhdx.fitting_tf.TFFitResult (series, intervals, funcs, weights, inputs, loss=None)
Parameters
r_number list or r numbers these results cover

intervals (inclusive, exclusive) intervals which map results, models to r numbers (can be obtained from series)

5.3. Fitting TensorFlow 25

PyHDX Documentation, Release 0.2.2

funcs: assumed to be tghe same

assumed to be the same for all intervals

weights: list of weights (parameters) at lowest loss
Attributes

output

Methods

__call__ (timepoints) output: N x M array (peptides, timepoints)

class pyhdx.fitting_tf.TFParameter (name, shape, initializer=None, regularizer=None, con-

Parameter objects used in CurveFit TensorFlowS]iZ;fgrl._ II’\;Or’Zlflleters are ‘weights’ in the context of Neural Networks.
Parameters
name: :o0bj: str” Name of the parameter
shape: :obj: tuple’ Parameter shape
initializer: :class:"~tensorflow.python.keras.initializers.Initializer" Subclass of Keras Initial-
izer to initialize parameter elements.

regularizer :class: ~tensorflow.python.keras.regularizers.Regularizer’ Subclass of Keras
Regularizer applied to parameter elements.

constraint :class:”~tensorflow.python.keras.constraints.Constraint™ Subclass of keras Con-
straint applied to parameter elements.

5.4 FilelO

5.5 Output

class pyhdx.output.Report (output, name=None, doc=None, add_date=True)
.pdf output document

Methods

Remove the temporary directory specified in

rm_temp_dir()
_tmp_path.

26 Chapter 5. Module Documentation

PyHDX Documentation, Release 0.2.2

add_coverage_figures
add_peptide_figures
generate_pdf
make_subfigure
make_temp_dir
test_mpl
test_subfigure

rm_temp_dir ()
Remove the temporary directory specified in _tmp_path.

5.6 Support

pyhdx.support .autowrap (coverage, margin=4)
Automatically finds wrap value for coverage to not have overlapping peptides within margin

pyhdx. support.colors_to_pymol (r_number, color_arr, c_term=None, no_coverage="#8c8c8c")
coverts colors (hexadecimal format) and corresponding residue numbers to pml script to color structures in pymol
residue ranges in output are inclusive, incluive

c_term: optional residue number of the ¢ terminal of the last peptide doedsnt cover the ¢ terminal

pyhdx.support .gen_subclasses (cls)
Recursively find all subclasses of cls

pyhdx.support .grouper (3, ‘abcdefg’, 'x') --> (‘a’, b, 'c'), ('d', ‘¢, 'f'), ('g’, 'x', x")
pyhdx.support .make_color_array (rates, colors, thds, no_coverage="#8c8c8c")
Parameters
* rates — array of rates
e colors - list of colors (slow to fast)
* thds - list of thresholds
no_coverage: color value for no coverage :return:

pyvhdx. support .make_monomer (input_file, output_file)
reads input_file pdb file and removes all chains except chain A and all water

pyhdx.support .multi_otsu (*rates, classes=3)
global otsu thesholding of multiple rate arrays in log space

Parameters
rates: iterable iterable of numpy structured arrays with a ‘rate’ field
classes: :obj:" int™ Number of classes to divide the data into
Returns
thds: “obj :tuple: tuple with thresholds
pyhdx.support .reduce_inter (args, gap_size=- 1)

gap_size: int Gaps of this size between adjacent peptides is not considered to overlap. A value of -1 means that
peptides with exactly zero overlap are separated. With gap_size=0 peptides with exactly zero overlap are not
separated, and larger values tolerate larger gap sizes.

5.6. Support 27

https://docs.python.org/2/library/functions.html#int

PyHDX Documentation, Release 0.2.2

https://github.com/brentp/interlap/blob/3c4a5923¢97a5d9al1571e0c9eaSbb7eade784ee/interlap.py#L.224
MIT Liscence >>> reduce_inter([(2, 4), (4, 9)]) [(2, 4), (4, 9)] >>> reduce_inter([(2, 6), (4, 10)]) [(2, 10)]

pyhdx.support.scale (x, out_range=- 1, 1)
rescale input array X to range out_range

pyhdx.support .series_intersection (series_list)
finds and returns series where peptides are the intersection of all series

pyhdx.support .try_wrap (coverage, wrap, margin=4)
Check for a given coverage if the value of wrap is high enough to not have peptides overlapping within margin

28 Chapter 5. Module Documentation

https://github.com/brentp/interlap/blob/3c4a5923c97a5d9a11571e0c9ea5bb7ea4e784ee/interlap.py#L224

CHAPTER
SIX

WEB APPLICATION

This page contains auto-generated docs for PyHDX’ web application.
There are three applications available:
* Main Application Fitting of HDX-MS datasets, classification, visualization and exporting data.

« Single Classification Reload exported data from the main application for classification, visualization and export-
ing data.

¢ Binary Comparison Reload multiple exported datasets from the main application and calculate differences be-
tween pairs of datasets. The resulting differences can again be classified, visualized and exported.

The functionality in each app can be controlled by Controllers which can be found in the left sidebar. The functionality
of every controller per app is listed in the sections below.

6.1 Main Application

class pyhdx.panel.controllers.PeptideFileInputControl (parent, **params)
Peptide Input

This controller allows users to input .csv file (Currently only DynamX format) of ‘state’ peptide uptake data. Users
can then choose how to correct for back-exchange and which ‘state’ and exposure times should be used for analysis.

Add File (Action)
Add File

Clear Files (Action)
Clear files

Drop first (Integer, bounds=(0, None), default=1)
Select the number of N-terminal residues to ignore.

Ignore prolines (Boolean, bounds=(0, 1), default=True)
Prolines are ignored as they do not exchange D.

Deuterium percentage (Number, bounds=(0, 100), default=95.0)

29

PyHDX Documentation, Release 0.2.2

Percentage of deuterium in the labelling buffer

Load Files (Action)
Load the selected files

Norm mode (Selector, default="Exp’, options=[‘Exp’, ‘Theory’])
Select method of normalization

Norm State (Selector, options=[])
State used to normalize uptake

Norm exposure (Selector, options=[])
Exposure used to normalize uptake

Back exchange percentage (Number, bounds=(0, 100), default=28.0)
Global percentage of back-exchange

Experiment State (Selector, options=[])
State for selected experiment

Experiment Exposures (ListSelector, default=[], options=["])
Selected exposure time to use

Parse (Action)
Parse selected peptides for further analysis and apply back-exchange correction

class pyhdx.panel.controllers.CoverageControl (parent, **params)

Coverage

This controller allows users to control the peptide coverage figure, by choosing how many peptides to plot vertically,
which color map to use, and which exposure time to show.

Wrap (Integer, bounds=(0, None), default=25)
Number of peptides vertically before moving to the next row.

Color map (Selector, default="jet’, options=[‘jet’, ‘inferno’, ‘viridis’, ‘cividis’, ‘plasma’, ‘cubehelix’])
Color map for coloring peptides by their deuteration percentage.

30

Chapter 6. Web Application

PyHDX Documentation, Release 0.2.2

Index (Integer, bounds=(0, 10), default=0)
Current index of coverage plot in time.

class pyhdx.panel.controllers.InitialGuessControl (parent, ¥*params)
Initial Guesses

This controller allows users to derive initial guesses for D-exchange rate from peptide uptake data.

Fitting model (Selector, default="Half-life (A)’, options=[‘Half-life (A)’, ‘Association’])
Choose method for determining initial guesses.

Lower bound (Number, default=0.0)
Lower bound for association model fitting

Upper bound (Number, default=0.0)
Upper bound for association model fitting

Do fitting (Action)
Start initial guess fitting

class pyhdx.panel.controllers.FitControl (parent, **params)
Fitting

This controller allows users to execute TensorFlow fitting of the global data set.

Currently, repeated fitting overrides the old result.

Initial guess (Selector, options=[])
Name of dataset to use for initial guesses.

C term (Integer)
Residue number to which the last amino acid in the sequence corresponds.

Temperature (Number, default=293.15)
Deuterium labelling temperature in Kelvin

pH (Number, default=8.0)
Deuterium labelling pH

6.1. Main Application 31

PyHDX Documentation, Release 0.2.2

Stop loss (Number, bounds=(0, None), default=0.01)
Threshold loss difference below which to stop fitting.

Stop patience (Integer, bounds=(1, None), default=50)
Number of epochs where stop loss should be satisfied before stopping.

Learning rate (Number, bounds=(0, None), default=0.01)
Learning rate parameter for optimization.

Epochs (Number, bounds=(1, None), default=100000)
Maximum number of epochs (iterations.

L1 regularizer (Number, bounds=(0, None), default=20)
Value for 11 regularizer.

Do Fitting (Action)
Start TensorFlow global fitting

class pyhdx.panel.controllers.ClassificationControl (parent, **param)

Classification
This controller allows users classify ‘mapping’ datasets and assign them colors.

Coloring can be either in discrete categories or as a continuous custom color map.

Target (Selector, options=[])

Mode (Selector, default="Discrete’, options=[‘Discrete’, ‘Continuous’])
Choose color mode (interpolation between selected colors).

Num colors (Number, bounds=(1, 10), default=3)
Number of classification colors.

Otsu (Action)
Automatically perform thresholding based on Otsu’s method.

Linear (Action)
Automatically perform thresholding by creating equally spaced sections.

32

Chapter 6. Web Application

PyHDX Documentation, Release 0.2.2

Log space (Boolean, bounds=(0, 1), default=True)
Boolean to set whether to apply colors in log space or not.

Show Thresholds (Boolean, bounds=(0, 1), default=True)
Toggle to show/hide threshold lines.

class pyhdx.panel.controllers.FileExportControl (parent, **param)
File Export

This controller allows users to export and download datasets.

All datasets can be exported as .txt tables. ‘Mappable’ datasets (with r_number column) can be exported as .pml
pymol script, which colors protein structures based on their ‘color’ column.

Target dataset (Selector, options=[])
Name of the dataset to export

C term (Integer, bounds=(0, None), default=0)

class pyhdx.panel.controllers.ProteinViewControl (parent, **params)
Protein Viewer

This controller allows users control the Protein view figure. Structures can be specified either by RCSB ID or
uploading a .pdb file.

Colors are assigned according to ‘color’ column of the selected dataset.

Target dataset (Selector, options=[])
Name of the dataset to apply coloring from

Input option (Selector, default="Upload File’, options=[‘Upload File’, ‘RCSB PDB’])
Choose wheter to upload .pdb file or directly download from RCSB PDB.

Resb id (String, default=")
RCSB PDB identifier of protein entry to download and visualize.

No coverage (Color, default="#8c8c8¢")
Color to use for regions of no coverage.

6.1. Main Application 33

PyHDX Documentation, Release 0.2.2

Representation (Selector, default="cartoon’, options=[‘backbone’, ‘ball+stick’, ‘cartoon’, ‘hyperball’, ‘licorice’,
‘ribbon’, ‘rope’, ‘spacefill’, ‘surface’])
Representation to use to render the protein.

Spin (Boolean, bounds=(0, 1), default=False)
Rotate the protein around an axis.

class pyhdx.panel.controllers.OptionsControl (parent, **param)

Options

The controller is used for various settings.

Link xrange (Boolean, bounds=(0, 1), default=True)
Link the X range of the coverage figure and other linear mapping figures.

Log level (Selector, default="DEBUG’, options=['DEBUG’, INFO’, “‘WARN’, ‘ERROR’, ‘FATAL’, ‘OFF,
‘TRACE’])

Set the logging level.

6.2 Single Classification

class pyhdx.panel.controllers.MappingFileInputControl (parent, **params)

File Input

This controller allows users to upload *.txt files where quantities (protection factors, Gibbs free energy, etc) are
mapped to a linear sequence.

The column should be tab separated with on the last header line (starts with ‘#’) the names of the columns. Columns
should be tab-delimited.

Input file (Parameter)
Input file to add to available datasets

Dataset name (String, default=")
Name for the dataset to add. Defaults to filename

Offset (Integer, default=0)
Offset to add to the file’s r_number column

34

Chapter 6. Web Application

PyHDX Documentation, Release 0.2.2

Add dataset (Action)
Add the dataset to available datasets

Datasets (ListSelector, options=[])
Current datasets

Remove dataset (Action)
Remove selected datasets

class pyhdx.panel.controllers.SingleControl (parent, **params)
Datasets

This controller allows users to select a dataset from available datasets, and choose a quantity to classify/visualize,
and add this quantity to the available datasets.

Dataset (Selector, options=[])
Dataset

Dataset name (String, default=")
Name of the dataset to add

Quantity (Selector, options=[])
Select a quantity to plot (column from input txt file)

Add dataset (Action)
Click to add this comparison to available comparisons

Dataset list (ListSelector, options=[])
Lists available comparisons

Remove dataset (Action)
Remove selected datasets from available datasets

class pyhdx.panel.controllers.ClassificationControl (parent, **param)
Classification

This controller allows users classify ‘mapping’ datasets and assign them colors.

6.2. Single Classification 35

PyHDX Documentation, Release 0.2.2

Coloring can be either in discrete categories or as a continuous custom color map.

Target (Selector, options=[])

Mode (Selector, default="Discrete’, options=[‘Discrete’, ‘Continuous’])
Choose color mode (interpolation between selected colors).

Num colors (Number, bounds=(1, 10), default=3)
Number of classification colors.

Otsu (Action)
Automatically perform thresholding based on Otsu’s method.

Linear (Action)
Automatically perform thresholding by creating equally spaced sections.

Log space (Boolean, bounds=(0, 1), default=True)
Boolean to set whether to apply colors in log space or not.

Show Thresholds (Boolean, bounds=(0, 1), default=True)
Toggle to show/hide threshold lines.

class pyhdx.panel.controllers.ProteinViewControl (parent, **params)

Protein Viewer

This controller allows users control the Protein view figure. Structures can be specified either by RCSB ID or
uploading a .pdb file.

Colors are assigned according to ‘color’ column of the selected dataset.

Target dataset (Selector, options=[])
Name of the dataset to apply coloring from

Input option (Selector, default="Upload File’, options=[‘Upload File’, RCSB PDB’])
Choose wheter to upload .pdb file or directly download from RCSB PDB.

Resb id (String, default=")
RCSB PDB identifier of protein entry to download and visualize.

36

Chapter 6. Web Application

PyHDX Documentation, Release 0.2.2

No coverage (Color, default="#8c8c8¢")
Color to use for regions of no coverage.

Representation (Selector, default="cartoon’, options=[‘backbone’, ‘ball+stick’, ‘cartoon’, ‘hyperball’, ‘licorice’,
‘ribbon’, ‘rope’, ‘spacefill’, ‘surface’])
Representation to use to render the protein.

Spin (Boolean, bounds=(0, 1), default=False)
Rotate the protein around an axis.

class pyhdx.panel.controllers.DifferenceFileExportControl (parent, **param)
File Export

This controller allows users to export and download datasets.

‘Mappable’ datasets (with r_number column) can be exported as .pml pymol script, which colors protein structures
based on their ‘color’ column.

Additional GUI elements on:

pyvhdx.panel.controllers.FileExportControl: target, c_term

class pyhdx.panel.controllers.OptionsControl (parent, **param)
Options

The controller is used for various settings.

Link xrange (Boolean, bounds=(0, 1), default=True)
Link the X range of the coverage figure and other linear mapping figures.

Log level (Selector, default="DEBUG’, options=['DEBUG’, INFO’, “‘WARN’, ‘ERROR’, ‘FATAL’, ‘OFF,
‘TRACE’])

Set the logging level.

6.2. Single Classification 37

PyHDX Documentation, Release 0.2.2

6.3 Binary Comparison

class pyhdx.panel.controllers.MappingFileInputControl (parent, **params)
File Input

This controller allows users to upload *.txt files where quantities (protection factors, Gibbs free energy, etc) are
mapped to a linear sequence.

The column should be tab separated with on the last header line (starts with ‘#’) the names of the columns. Columns
should be tab-delimited.

Input file (Parameter)
Input file to add to available datasets

Dataset name (String, default=")
Name for the dataset to add. Defaults to filename

Offset (Integer, default=0)
Offset to add to the file’s r_number column

Add dataset (Action)
Add the dataset to available datasets

Datasets (ListSelector, options=[])
Current datasets

Remove dataset (Action)
Remove selected datasets

class pyhdx.panel.controllers.DifferenceControl (parent, **params)
Differences

This controller allows users to select two datasets from available datasets, choose a quantity to compare between,
and choose the type of operation between quantities (Subtract/Divide).

Dataset 1 (Selector, options=[])
First dataset to compare

Dataset 2 (Selector, options=[])
Second dataset to compare

38 Chapter 6. Web Application

PyHDX Documentation, Release 0.2.2

Comparison name (String, default=")

Operation (Selector, default="Subtract’, options=[‘Subtract’, ‘Divide’])
Select the operation to perform between the two datasets

Comparison quantity (Selector, options=[])
Select a quantity to compare (column from input txt file)

Add comparison (Action)
Click to add this comparison to available comparisons

Comparison list (ListSelector, options=[])
Lists available comparisons

Remove comparison (Action)
Remove selected comparisons from the list

class pyhdx.panel.controllers.ClassificationControl (parent, **param)
Classification

This controller allows users classify ‘mapping’ datasets and assign them colors.

Coloring can be either in discrete categories or as a continuous custom color map.

Target (Selector, options=[])

Mode (Selector, default="Discrete’, options=[‘Discrete’, ‘Continuous’])
Choose color mode (interpolation between selected colors).

Num colors (Number, bounds=(1, 10), default=3)
Number of classification colors.

Otsu (Action)
Automatically perform thresholding based on Otsu’s method.

Linear (Action)
Automatically perform thresholding by creating equally spaced sections.

6.3. Binary Comparison 39

PyHDX Documentation, Release 0.2.2

Log space (Boolean, bounds=(0, 1), default=True)
Boolean to set whether to apply colors in log space or not.

Show Thresholds (Boolean, bounds=(0, 1), default=True)
Toggle to show/hide threshold lines.

class pyhdx.panel.controllers.ProteinViewControl (parent, **params)

Protein Viewer

This controller allows users control the Protein view figure. Structures can be specified either by RCSB ID or
uploading a .pdb file.

Colors are assigned according to ‘color’ column of the selected dataset.

Target dataset (Selector, options=[])
Name of the dataset to apply coloring from

Input option (Selector, default="Upload File’, options=[‘Upload File’, RCSB PDB’])
Choose wheter to upload .pdb file or directly download from RCSB PDB.

Resb id (String, default=")
RCSB PDB identifier of protein entry to download and visualize.

No coverage (Color, default="#8c8c8¢’)
Color to use for regions of no coverage.

Representation (Selector, default="cartoon’, options=[‘backbone’, ‘ball+stick’, ‘cartoon’, ‘hyperball’, ‘licorice’,
‘ribbon’, ‘rope’, ‘spacefill’, ‘surface’])
Representation to use to render the protein.

Spin (Boolean, bounds=(0, 1), default=False)
Rotate the protein around an axis.

class pyhdx.panel.controllers.DifferenceFileExportControl (parent, **param)

File Export
This controller allows users to export and download datasets.

‘Mappable’ datasets (with r_number column) can be exported as .pml pymol script, which colors protein structures
based on their ‘color’ column.

40

Chapter 6. Web Application

PyHDX Documentation, Release 0.2.2

Additional GUI elements on:

pyvhdx.panel.controllers.FileExportControl: target, c_term

class pyhdx.panel.controllers.OptionsControl (parent, **param)
Options

The controller is used for various settings.

Link xrange (Boolean, bounds=(0, 1), default=True)
Link the X range of the coverage figure and other linear mapping figures.

Log level (Selector, default="DEBUG’, options=["'DEBUG’, INFO’, ‘WARN’, ‘ERROR’, ‘FATAL’, ‘OFF’,
‘TRACE’])

Set the logging level.

6.3. Binary Comparison 41

PyHDX Documentation, Release 0.2.2

42

Chapter 6. Web Application

CHAPTER
SEVEN

CONTRIBUTING

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

7.1 Types of Contributions

7.1.1 Report Bugs

Report bugs at https://github.com/Jhsmit/pyhdx/issues.
If you are reporting a bug, please include:
* Your operating system name and version.
* Any details about your local setup that might be helpful in troubleshooting.

¢ Detailed steps to reproduce the bug.

7.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants to
implement it.

7.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to whoever
wants to implement it.

7.1.4 Write Documentation

PyHDX could always use more documentation, whether as part of the official PyHDX docs, in docstrings, or even on the
web in blog posts, articles, and such.

43

https://github.com/Jhsmit/pyhdx/issues

PyHDX Documentation, Release 0.2.2

7.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/Jhsmit/pyhdx/issues.
If you are proposing a feature:

¢ Explain in detail how it would work.

» Keep the scope as narrow as possible, to make it easier to implement.

* Remember that this is a volunteer-driven project, and that contributions are welcome :)

7.2 Get Started!

Ready to contribute? Here’s how to set up pyhdx for local development.
1. Fork the pyhdx repo on GitHub.
2. Clone your fork locally:

$ git clone git@github.com:your_name_here/pyhdx.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv pyhdx
$ cd pyhdx/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python
versions with tox:

$ flake8 pyhdx tests
$ python setup.py test or py.test
S tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

44 Chapter 7. Contributing

https://github.com/Jhsmit/pyhdx/issues

PyHDX Documentation, Release 0.2.2

7.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:
1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function with
a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.7, 3.4, 3.5 and 3.6, and for PyPy. Check https://travis-ci.org/Jhsmit/
pyhdx/pull_requests and make sure that the tests pass for all supported Python versions.

7.4 Tips

To run a subset of tests:

’$ py.test tests.test_pyhdx

7.5 Deploying

A reminder for the maintainers on how to deploy. Make sure all your changes are committed (including an entry in
HISTORY .rst). Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

7.3. Pull Request Guidelines 45

https://travis-ci.org/Jhsmit/pyhdx/pull_requests
https://travis-ci.org/Jhsmit/pyhdx/pull_requests

PyHDX Documentation, Release 0.2.2

46

Chapter 7. Contributing

CHAPTER
EIGHT

CREDITS

8.1 Development Lead

¢ Jochem Smit <jhsmit@gmail.com>

8.2 Contributors

None yet. Why not be the first?

47

mailto:jhsmit@gmail.com

PyHDX Documentation, Release 0.2.2

48

Chapter 8. Credits

CHAPTER
NINE

HISTORY

9.1 0.1.0 (2019-09-06)

¢ First release on PyPI.

49

PyHDX Documentation, Release 0.2.2

50

Chapter 9. History

CHAPTER
TEN

INDICES AND TABLES

* genindex
¢ modindex

¢ search

51

PyHDX Documentation, Release 0.2.2

52

Chapter 10. Indices and tables

pyhdx.
pyhdx.
pyhdx.
pyhdx.
pyhdx.
pyhdx.

fileIO, 29
fitting, 19
fitting_tf, 26
models, 11
output, 29
support, 29

PYTHON MODULE INDEX

53

PyHDX Documentation, Release 0.2.2

54

Python Module Index

A

autowrap () (in module pyhdx.support), 29

B

Between (class in pyhdx.fitting_tf), 26
block_coverage () (pyhdx.models.Coverage prop-
erty), 12
block_length ()
12
build () (pyhdx.fitting_tf.CurveFit method), 26

C

calc_kint () (pyhdx.models.Coverage method), 12

calc_kint () (pyhdx.models.TFCoverage method), 18

calc_scores () (pyhdx.models. PeptideMeasurements
method), 17

call () (pyhdx.fitting_tf.CurveFit method), 26

(pyhdx.models.Coverage property),

call () (pyhdx.fitting_tf. NaNMeanSquaredError
method), 28
chi_squared () (pyhdx.fitting. EmptyResult property),

19
ClassificationControl (class in
hdx.panel.controllers), 34, 37, 40
colors_to_pymol () (in module pyhdx.support), 29
compute_output_shape () (py-
hdx.fitting_tf. CurveFit method), 26
contiguous_regions () (in module pyhdx.models),
19
cov_sequence ()
erty), 18
Coverage (class in pyhdx.models), 11
CoverageControl (class in pyhdx.panel.controllers),

py-

(pyhdx.models. TFCoverage prop-

32
CurveFit (class in pyhdx.fitting_tf), 26
D
DifferenceControl (class in py-
hdx.panel.controllers), 40
DifferenceFileExportControl (class in py-

hdx.panel.controllers), 38, 42

INDEX

E

EmptyResult (class in pyhdx.fitting), 19
exposures () (pyhdx.models.PeptideMaster Table prop-
erty), 15

F

FileExportControl (class in
hdx.panel.controllers), 34
fit_kinetics () (in module pyhdx.fitting), 24
FitControl (class in pyhdx.panel.controllers), 33
full_data () (pyhdx.models.KineticsSeries property),
13
func_long_ass () (in module pyhdx.fitting), 25
func_long_dis () (in module pyhdx.fitting), 25
func_short_ass () (in module pyhdx.fitting), 25
func_short_dis () (in module pyhdx.fitting), 25

G

gen_subclasses () (in module pyhdx.support), 29

get_config() (pyhdx.fitting_tf.L1L2Differential
method), 27

get_d () (pyhdx.fitting. KineticsFitResult method), 20

get_data () (pyhdx.models. PeptideMaster Table
method), 15

get_p () (pyhdx.fitting. KineticsFitResult method), 20

get_param () (pyhdx.fitting KineticsFitResult method),

py-

20

get_param_values () (pyhdx. fitting. LSQKinetics
method), 22

get_parameter () (pyhdx. fitting. KineticsModel
method), 21

get_rate () (pyhdx.fitting. LSOKinetics method), 22

get_rate () (pyhdx.fitting. TwoComponentAssociationModel

method), 23

get_rate () (pyhdx.fitting. TwoComponentDissociationModel

method), 24
get_sections () (pyhdx.models.Coverage method), 12
get_sections () (pyhdx.models. TFCoverage method),
18
get_tau () (pyhdx.fitting. LSQKinetics method), 22
get_tau () (pyhdx.fitting. TwoComponentAssociationModel
method), 23

55

PyHDX Documentation, Release 0.2.2

get_tau () (pyhdx.fitting. TwoComponentDissociationModel

method), 24

groupby_state () (pyhdx.models.PeptideMasterTable
method), 15

grouper () (in module pyhdx.support), 29

F{

has_coverage () (pyhdx.models.Coverage property),
12

has_coverage () (pyhdx.models. TFCoverage prop-
erty), 18

|

initial_guess|() (py-

hdx. fitting. OneComponentAssociationModel
method), 22
initial_guess ()
hdx.fitting. OneComponentDissociationModel
method), 23
initial_guess|()
hdx. fitting. TwoComponentAssociationModel
method), 23
initial_guess|()
hdx.fitting. TwoComponentDissociationModel
method), 24
InitialGuessControl
hdx.panel.controllers), 32
isin_by_idx () (pyhdx.models. PeptideMaster Table
static method), 15

(py-

(py-

(py-

(class in py-

K

k_int () (pyhdx.models.KineticsSeries property), 13
KineticsFitResult (class in pyhdx.fitting), 19
KineticsModel (class in pyhdx.fitting), 20
KineticsSeries (class in pyhdx.models), 12

L

L1L2Differential (class in pyhdx.fitting_tf), 27
LossHistory (class in pyhdx.fitting_tf), 27
LSQKinetics (class in pyhdx.fitting), 21

M

make_color_array () (in module pyhdx.support), 29
make_monomer () (in module pyhdx.support), 29

make_parameter () (pyhdx. fitting. KineticsModel
method), 21

make_uniform() (pyhdx.models. KineticsSeries
method), 13

make_variable () (pyhdx. fitting. KineticsModel
method), 21

MappingFileInputControl (class in
hdx.panel.controllers), 36, 39

module

py-

fileIO, 29
fitting, 19
fitting_tf, 26
models, 11
pyhdx.output, 29
pyhdx. support, 29
multi_otsu () (in module pyhdx.support), 29

N

NaNMeanSquaredError (class in pyhdx. fitting_tf), 27

O

on_epoch_end ()
method), 27

OneComponentAssociationModel (class in py-
hdx.fitting), 22

OneComponentDissociationModel (class in py-
hdx.fitting), 22

OptionsControl (class in pyhdx.panel.controllers), 36,
39, 42

pyhdx.
pyhdx.
pyhdx.
pyhdx.

(pyhdx.fitting_tf.LossHistory

P

params () (pyhdx.fitting. EmptyResult property), 19
PeptideFileInputControl (class in
hdx.panel.controllers), 31
PeptideMasterTable (class in pyhdx.models), 14
PeptideMeasurements (class in pyhdx.models), 16
ProteinViewControl (class in py-
hdx.panel.controllers), 35, 38, 41
pyhdx.fileIO
module, 29
pyhdx.fitting
module, 19
pyhdx.fitting_tf
module, 26
pyhdx.models
module, 11
pyhdx.output
module, 29
pyhdx.support
module, 29

py-

r_names () (pyhdx.fitting. KineticsModel property), 21
rate () (pyhdx.fitting. KineticsFitResult property), 20
reduce_inter () (in module pyhdx.support), 30
Report (class in pyhdx.output), 29

rm_temp_dir () (pyhdx.output. Report method), 29

S

scale () (in module pyhdx.support), 30
scores_1stsq() (pyhdx.models.PeptideMeasurements

property), 17

56

Index

PyHDX Documentation, Release 0.2.2

scores_nnls () (pyhdx.models.PeptideMeasurements
method), 17

scores_nnls_tikonov () (py-
hdx.models. PeptideMeasurements method),
17

scores_stack () (pyhdx.models.KineticsSeries prop-
erty), 13

sequence () (pyhdx.models.Coverage property), 12
sequence () (pyhdx.models. TFCoverage property), 18

sequence_r_number () (pyhdx.models.Coverage
property), 12

sequence_r_number () (pyhdx.models. TFCoverage
property), 18

series_intersection() (in module py-
hdx.support), 30

set_backexchange () (py-
hdx.models. PeptideMaster Table method),
15

set_control () (pyhdx.models.KineticsSeries method),
13

set_control () (pyhdx.models. PeptideMaster Table
method), 15

set_control () (pyhdx.models.PeptideMeasurements
method), 17

SingleControl (class in pyhdx.panel.controllers), 36

SingleKineticModel (class in pyhdx.fitting), 23

split () (pyhdx.models.Coverage method), 12

split () (pyhdx.models.KineticsSeries method), 13

split () (pyhdx.models.TFCoverage method), 19

states () (pyhdx.models.PeptideMasterTable property),
16

T

tau () (pyhdx.fitting. KineticsFitResult property), 20
TFCoverage (class in pyhdx.models), 17
TFFitResult (class in pyhdx.fitting_tf), 28
TFParameter (class in pyhdx.fitting_tf), 28
try_wrap () (in module pyhdx.support), 30
TwoComponentAssociationModel (class in py-
hdx.fitting), 23
TwoComponentDissociationModel (class in py-

hdx.fitting), 24

U

uniform () (pyhdx.models.KineticsSeries property), 14
uptake_corrected () (pyhdx.models.KineticsSeries

property), 14

X

X_norm () (pyhdx.models.Coverage property), 11
X_norm () (pyhdx.models. TFCoverage property), 18
X_red () (pyhdx.models.Coverage property), 11
X_red_norm () (pyhdx.models.Coverage property), 12

Index

57

	PyHDX
	Web Application

	Installation
	Stable release
	From sources
	Dependencies

	Fitting
	Overfitting
	Non-identifyability

	Examples
	pyHDX basics
	Under construction
	Fitting

	Module Documentation
	Models
	Fitting
	Fitting TensorFlow
	FileIO
	Output
	Support

	Web Application
	Main Application
	Single Classification
	Binary Comparison

	Contributing
	Types of Contributions
	Get Started!
	Pull Request Guidelines
	Tips
	Deploying

	Credits
	Development Lead
	Contributors

	History
	0.1.0 (2019-09-06)

	Indices and tables
	Python Module Index
	Index

