
Least-Squares Minimization with
Constraints for Python

Release 0.6

Matthew Newville

August 14, 2012

CONTENTS

1 Downloading and Installation 3
1.1 Prerequisites . 3
1.2 Downloads . 3
1.3 Development Version . 4
1.4 Installation . 4
1.5 Acknowledgements . 4
1.6 License . 4

2 Getting started with Non-Linear Least-Squares Fitting 5
2.1 Using Parameters instead of Variables . 5
2.2 The Parameter class . 7
2.3 The Parameters class . 7
2.4 Simple Example . 8

3 Performing Fits, Analyzing Outputs 9
3.1 The minimize() function . 9
3.2 Writing a Fitting Function . 9
3.3 Choosing Different Fitting Engines . 10
3.4 Goodness-of-Fit and estimated uncertainty and correlations . 11
3.5 Using the Minimizer class . 12

4 Calculation of confidence intervals 15
4.1 Method used for calculating confidence intervals . 15
4.2 A basic example . 15
4.3 An advanced example . 16
4.4 Documentation of methods . 19

5 Bounds Implementation 23

6 Using Mathematical Constraints 25
6.1 Overview . 25
6.2 Supported Operators, Functions, and Constants . 25
6.3 Advanced usage of Expressions in lmfit . 26

Python Module Index 27

Python Module Index 29

Index 31

i

ii

Least-Squares Minimization with Constraints for Python, Release 0.6

The lmfit Python package provides a simple, flexible interface to non-linear least-squares optimization, or curve fitting.
By default, lmfit uses and builds upon the Levenberg-Marquardt minimization algorithm from MINPACK-1 as imple-
mented in scipy.optimize.leastsq. Provisional support for some other optimization routines is included. Currently, the
L-BFGS (limited memory Broyden-Fletcher-Goldfarb-Shanno) algorithm as implemented in scipy.optimize.l_bfgs_b
andr the simulated annealing algorithm as implemented in scipy.optimize.anneal are both implemented and partially
tested. However, the Levenberg-Marquardt algorithm is by far the most tested and appears to be the most robust for
finding local minima of well-described models of scientific measurements, parts of this document may assume that it
Levenberg-Marquardt algorithm is being discussed.

For any minimization problem, the programmer must provide an objective function that takes a set of values for the
variables in the fit, and produces the residual function to be minimized in the least-squares sense.

The lmfit package allows models to be written in terms of a set of Parameters, which are extensions of simple numerical
variables with the following properties:

• Parameters can be fixed or floated in the fit.

• Parameters can be bounded with a minimum and/or maximum value.

• Parameters can be written as simple mathematical expressions of other Parameters, using the asteval module
(which is included with lmfit). These values will be re-evaluated at each step in the fit, so that the expression is
satisfied. This gives a simple but flexible approach to constraining fit variables.

The main advantage of using Parameters instead of fit variables is that the objective function does not have to be
rewritten for a change in what is varied or what constraints are placed on the fit. The programmer can write a fairly
general model that encapsulates the phenomenon to be optimized, and then allow a user of the model to change what
is varied and what constraints are placed on the model.

For the Levenberg-Marquardt algorithm, lmfit also calculates and reports the estimated uncertainties and correlation
between fitted variables.

CONTENTS 1

http://en.wikipedia.org/wiki/Levenberg-Marquardt_algorithm
http://en.wikipedia.org/wiki/MINPACK
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.leastsq.html
http://en.wikipedia.org/wiki/Limited-memory_BFGS
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_l_bfgs_b.html
http://en.wikipedia.org/wiki/Simulated_annealing
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.anneal.html
http://newville.github.com/asteval/

Least-Squares Minimization with Constraints for Python, Release 0.6

2 CONTENTS

CHAPTER

ONE

DOWNLOADING AND INSTALLATION

1.1 Prerequisites

The lmfit package requires Python, Numpy, and Scipy. Extensive testing on version compatibility has not yet been
done. Initial tests work with Python 3.2, but little testing with Python 3 has yet been done. No testing has been done
with 64-bit architectures, but as this package is pure Python, no significant troubles are expected.

1.2 Downloads

The latest stable version is available from PyPI or CARS (Univ of Chicago):

Download Option Python Versions Location
Source Kit 2.6, 2.7, 3.2

• lmfit-0.6.tar.gz (PyPI)
• lmfit-0.6.tar.gz (CARS)

Win32 Installer 2.6
• lmfit-0.6.win32-py2.6.exe

(PyPI)
• lmfit-0.6.win32-py2.6.exe

(CARS)

Win32 Installer 2.7
• lmfit-0.6.win32-py2.7.exe

(PyPI)
• lmfit-0.6.win32-py2.7.exe

(CARS)

Win32 Installer 3.2
• lmfit-0.6.win32-py3.2.exe

(PyPI)
• lmfit-0.6.win32-py3.2.exe

(CARS)

Development Version all use lmfit github repository

if you have Python Setup Tools installed, you can download and install the lmfit-py Package simply with:

easy_install -U lmfit

3

http://pypi.python.org/packages/source/l/lmfit/lmfit-0.6.tar.gz
http://cars9.uchicago.edu/software/python/lmfit/src/lmfit-0.6.tar.gz
http://pypi.python.org/packages/any/l/lmfit/lmfit-0.6.win32-py2.6.exe
http://pypi.python.org/packages/any/l/lmfit/lmfit-0.6.win32-py2.6.exe
http://cars9.uchicago.edu/software/python/lmfit/src/lmfit-0.6.win32-py2.6.exe
http://cars9.uchicago.edu/software/python/lmfit/src/lmfit-0.6.win32-py2.6.exe
http://pypi.python.org/packages/any/l/lmfit/lmfit-0.6.win32-py2.7.exe
http://pypi.python.org/packages/any/l/lmfit/lmfit-0.6.win32-py2.7.exe
http://cars9.uchicago.edu/software/python/lmfit/src/lmfit-0.6.win32-py2.7.exe
http://cars9.uchicago.edu/software/python/lmfit/src/lmfit-0.6.win32-py2.7.exe
http://pypi.python.org/packages/any/l/lmfit/lmfit-0.6.win32-py3.2.exe
http://pypi.python.org/packages/any/l/lmfit/lmfit-0.6.win32-py3.2.exe
http://cars9.uchicago.edu/software/python/lmfit/src/lmfit-0.6.win32-py3.2.exe
http://cars9.uchicago.edu/software/python/lmfit/src/lmfit-0.6.win32-py3.2.exe
http://github.com/newville/lmfit-py
http://pypi.python.org/pypi/setuptools

Least-Squares Minimization with Constraints for Python, Release 0.6

1.3 Development Version

To get the latest development version, use:

git clone http://github.com/newville/lmfit-py.git

1.4 Installation

Installation from source on any platform is:

python setup.py install

1.5 Acknowledgements

LMFIT was originally written by Matthew Newville. Substantial code and documentation improvements, especially
for improved estimates of confidence intervals was provided by Till Stensitzki. The implemenation of parameter
bounds as described in the MINUIT documentation is taken from Jonathan J. Helmus’ leastsqbound code, with per-
mission. Many valuable suggestions for improvements have come from Christoph Deil. The code obviously depends
on, and owes a very large debt to the code in scipy.optimize. Several discussions on the scipy mailing lists have also
led to improvements in this code.

1.6 License

The LMFIT-py code is distribution under the following license:

Copyright (c) 2012 Matthew Newville, The University of Chicago Till Stensitzki, Freie Universitat
Berlin

Permission to use and redistribute the source code or binary forms of this software and its documentation,
with or without modification is hereby granted provided that the above notice of copyright, these terms
of use, and the disclaimer of warranty below appear in the source code and documentation, and that none
of the names of above institutions or authors appear in advertising or endorsement of works derived from
this software without specific prior written permission from all parties.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THIS SOFTWARE.

4 Chapter 1. Downloading and Installation

CHAPTER

TWO

GETTING STARTED WITH NON-LINEAR
LEAST-SQUARES FITTING

The lmfit package is designed to provide a simple way to build complex fitting models and apply them to real data.
This chapter describes how to set up and perform simple fits, but does assume some basic knowledge of Python,
Numpy, and modeling data.

To model data in the least-squares sense, the most important step is writing a function that takes the values of the
fitting variables and calculates a residual function (data-model) that is to be minimized in the least-squares sense

χ2 =
N∑
i

[ymeas
i − ymodel

i (v)]2

ε2i

where ymeas
i is the set of measured data, ymodel

i (v) is the model calculation, v is the set of variables in the model to
be optimized in the fit, and εi is the estimated uncertainty in the data.

In a traditional non-linear fit, one writes a function that takes the variable values and calculates the residual ymeas
i −

ymodel
i (v), perhaps something like:

def residual(vars, x, data):
amp = vars[0]
phaseshift = vars[1]
freq = vars[2]
decay = vars[3]

model = amp * sin(x * freq + phaseshift) * exp(-x*x*decay)

return (data-model)

To perform the minimization with scipy, one would do:

from scipy.optimize import leastsq
vars = [10.0, 0.2, 3.0, 0.007]
out = leastsq(residual, vars, args=(x, data))

Though in python, and fairly easy to use, this is not terribly different from how one would do the same fit in C or
Fortran.

2.1 Using Parameters instead of Variables

As described above, there are several practical challenges in doing least-squares fit with the traditional implementation
(Fortran, scipy.optimize.leastsq, and most other) in which a list of fitting variables to the function to be minimized.
These challenges include:

5

Least-Squares Minimization with Constraints for Python, Release 0.6

1. The user has to keep track of the order of the variables, and their meaning – vars[2] is the frequency, and so on.

2. If the user wants to fix a particular variable (not vary it in the fit), the residual function has to be altered.
While reasonable for simple cases, this quickly becomes significant work for more complex models, and greatly
complicates modeling for people not intimately familiar with the code.

3. There is no way to put bounds on values for the variables, or enforce mathematical relationships between the
variables.

The lmfit module is designed to void these shortcomings.

The main idea of lmfit is to expand a numerical variable with a Parameter, which have more attributes than simply
their value. Instead of a pass a list of numbers to the function to minimize, you create a Parameters object, add
parameters to this object, and pass along this object to your function to be minimized. With this transformation, the
above example would be translated to look like:

from lmfit import minimize, Parameters

def residual(params, x, data):
amp = params[’amp’].value
pshift = params[’phase’].value
freq = params[’frequency’].value
decay = params[’decay’].value

model = amp * sin(x * freq + pshift) * exp(-x*x*decay)

return (data-model)

params = Parameters()
params.add(’amp’, value=10)
params.add(’decay’, value=0.007)
params.add(’phase’, value=0.2)
params.add(’frequency’, value=3.0)

out = minimize(residual, params, args=(x, data))

So far, this simply looks like it replaced a list of values with a dictionary, accessed by name. But each of the named
Parameter in the Parameters object hold additional attributes to modify the value during the fit. For example,
Parameters can be fixed or bounded, and this can be done when being defined:

params = Parameters()
params.add(’amp’, value=10, vary=False)
params.add(’decay’, value=0.007, min=0.0)
params.add(’phase’, value=0.2)
params.add(’frequency’, value=3.0, max=10)

or later:

params[’amp’].vary = True
params[’decay’].max = 0.10

Now the fit will not vary the amplitude parameter, and will also impose a lower bound on the decay factor and an
upper bound on the frequency. Importantly, our function to be minimized remains unchanged.

An important point here is that the params object can be copied and modified to make many user-level changes to the
model and fitting process. Of course, most of the information about how your data is modeled goes into the fitting
function, but the approach here allows some external control as well.

6 Chapter 2. Getting started with Non-Linear Least-Squares Fitting

Least-Squares Minimization with Constraints for Python, Release 0.6

2.2 The Parameter class

class Parameter(value=None[, vary=True[, min=None[, max=None[, name=None[, expr=None]]]]])
create a Parameter object. These are the fundamental extension of a fit variable within lmfit, but you will
probably create most of these with the Parameters class.

Parameters

• value – the numerical value for the parameter

• vary (boolean (True/False)) – whether to vary the parameter or not.

• min – lower bound for value (None = no lower bound).

• max – upper bound for value (None = no upper bound).

• name (None or string – will be overwritten during fit if None.) – parameter name

• expr (None or string) – mathematical expression to use to evaluate value during fit.

Each of these inputs is turned into an attribute of the same name. As above, one hands a dictionary of Parameters to
the fitting routines. The name for the Parameter will be set to be consistent

After a fit, a Parameter for a fitted variable (ie with vary = True) will have the value attribute holding the best-fit
value, and may (depending on the success of the fit) have obtain additional attributes.

stderr
the estimated standard error for the best-fit value.

correl
a dictionary of the correlation with the other fitted variables in the fit, of the form:

{’decay’: 0.404, ’phase’: -0.020, ’frequency’: 0.102}

For details of the use of the bounds min and max, see Bounds Implementation.

The expr attribute can contain a mathematical expression that will be used to compute the value for the Parameter at
each step in the fit. See Using Mathematical Constraints for more details and examples of this feature.

2.3 The Parameters class

class Parameters
create a Parameters object. This is little more than a fancy dictionary, with the restrictions that

1. keys must be valid Python symbol names (so that they can be used in expressions of mathematical constraints).
This means the names must match [a-z_][a-z0-9_]* and cannot be a Python reserved word.

2.values must be valid Parameter objects.

Two methods for provided for convenience of initializing Parameters.

add(name[, value=None[, vary=True[, min=None[, max=None[, expr=None]]]]])
add a named parameter. This simply creates a Parameter object associated with the key name, with optional
arguments passed to Parameter:

p = Parameters()
p.add(’myvar’, value=1, vary=True)

add_many(self, paramlist)
add a list of named parameters. Each entry must be a tuple with the following entries:

2.2. The Parameter class 7

Least-Squares Minimization with Constraints for Python, Release 0.6

name, value, vary, min, max, expr

That is, this method is somewhat rigid and verbose (no default values), but can be useful when initially defining
a parameter list so that it looks table-like:

p = Parameters()
(Name, Value, Vary, Min, Max, Expr)
p.add_many((’amp1’, 10, True, None, None, None),

(’cen1’, 1.2, True, 0.5, 2.0, None),
(’wid1’, 0.8, True, 0.1, None, None),
(’amp2’, 7.5, True, None, None, None),
(’cen2’, 1.9, True, 1.0, 3.0, None),
(’wid2’, None, False, None, None, ’2*wid1/3’))

2.4 Simple Example

Putting it all together, a simple example of using a dictionary of Parameter objects and minimize() might look
like this:

from lmfit import minimize, Parameters

def residual(params, x, data=None):
amp = params[’amp’].value
shift = params[’phase_shift’].value
omega = params[’omega’].value
decay = params[’decay’].value

model = amp * sin(x * omega + shift) * exp(-x*x*decay)

return (data-model)

params = Parameters()
params.add(’amp’, value=10)
params.add(’decay’, value=0.007, vary=False)
params.add(’phase_shift’, value=0.2)
params.add(’omega’, value=3.0)

result = minimize(residual, params, args=(x, data))

print result.chisqr
print ’Best-Fit Values:’
for name, par in params.items():

print ’ %s = %.4f +/- %.4f ’ % (name, par.value, par.stderr)

8 Chapter 2. Getting started with Non-Linear Least-Squares Fitting

CHAPTER

THREE

PERFORMING FITS, ANALYZING
OUTPUTS

As shown in the previous sections, a simple fit can be performed with the minimize() function. For more sophis-
ticated modeling, the Minimizer class can be used to gain a bit more control, especially when using complicated
constraints.

3.1 The minimize() function

The minimize function takes a function to minimize, a dictionary of Parameter , and several optional arguments.
See Writing a Fitting Function for details on writing the function to minimize.

minimize(function, params[, args=None[, kws=None[, engine=’leastsq’[, **leastsq_kws]]]])
find values for the params so that the sum-of-squares of the returned array from function is minimized.

Parameters

• function (callable.) – function to return fit residual. See Writing a Fitting Function for
details.

• params (dict) – a dictionary of Parameters. Keywords must be strings that match
[a-z_][a-z0-9_]* and is not a python reserved word. Each value must be
Parameter.

• args (tuple) – arguments tuple to pass to the residual function as positional arguments.

• kws (dict) – dictionary to pass to the residual function as keyword arguments.

• engine (string) – name of fitting engine to use. See Choosing Different Fitting Engines for
details

• leastsq_kws (dict) – dictionary to pass to scipy.optimize.leastsq

Returns Minimizer object, which can be used to inspect goodness-of-fit statistics, or to re-run fit.

On output, the params will be updated with best-fit values and, where appropriate, estimated uncertainties and
correlations. See Goodness-of-Fit and estimated uncertainty and correlations for further details.

3.2 Writing a Fitting Function

An important component of a fit is writing a function to be minimized in the least-squares sense. Since this function
will be called by other routines, there are fairly stringent requirements for its call signature and return value. In

9

Least-Squares Minimization with Constraints for Python, Release 0.6

principle, your function can be any python callable, but it must look like this:

func(params, *args, **kws):
calculate residual from parameters.

Parameters

• params (dict) – parameters.

• args – positional arguments. Must match args argument to minimize()

• kws – keyword arguments. Must match kws argument to minimize()

Returns residual array (generally data-model) to be minimized in the least-squares sense.

Return type numpy array. The length of this array cannot change between calls.

A common use for the positional and keyword arguments would be to pass in other data needed to calculate the
residual, including such things as the data array, dependent variable, uncertainties in the data, and other data structures
for the model calculation.

As the function will be passed in a dictionary of Parameter s, it is advisable to unpack these to get numerical values
at the top of the function. A simple example would look like:

def residual(pars, x, data=None):
unpack parameters:
extract .value attribute for each parameter
amp = pars[’amp’].value
period = pars[’period’].value
shift = pars[’shift’].value
decay = pars[’decay’].value

if abs(shift) > pi/2:
shift = shift - sign(shift)*pi

if abs(period) < 1.e-10:
period = sign(period)*1.e-10

model = amp * sin(shift + x/period) * exp(-x*x*decay*decay)

if data is None:
return model

return (model - data)

In this example, x is a positional (required) argument, while the data array is actually optional (so that the function
returns the model calculation if the data is neglected). Also note that the model calculation will divide x by the varied
value of the ‘period’ Parameter. It might be wise to make sure this parameter cannot be 0. It would be possible to use
the bounds on the Parameter to do this:

params[’period’] = Parameter(value=2, min=1.e-10)

but might be wiser to put this directly in the function with:

if abs(period) < 1.e-10:
period = sign(period)*1.e-10

3.3 Choosing Different Fitting Engines

By default, the Levenberg-Marquardt algorithm is used for fitting. While often criticized, including the fact it finds
a local minima, this approach has some distinct advantages. These include being fast, and well-behaved for most

10 Chapter 3. Performing Fits, Analyzing Outputs

http://en.wikipedia.org/wiki/Levenberg-Marquardt_algorithm

Least-Squares Minimization with Constraints for Python, Release 0.6

curve-fitting needs, and making it easy to estimate uncertainties for and correlations between pairs of fit variables, as
discussed in Goodness-of-Fit and estimated uncertainty and correlations.

Alternative algorithms can also be used. These include simulated annealing which promises a better ability to avoid
local minima, and BFGS, which is a modification of the quasi-Newton method.

To select which of these algorithms to use, use the engine keyword to the minimize() function or use the corre-
sponding method name from the Minimizer class as listed in the Table of Supported Fitting Engines.

Table of Supported Fitting Engines:

Engine engine arg to minimize() Minimizer method
Levenberg-Marquardt leastsq leastsq()
L-BFGS-B lbfgsb lbfgsb()
Simulated Annealing anneal anneal()

Warning: The Levenberg-Marquardt method is by far the most tested fit method, and much of this documentation
assumes that this is the method used. For example, many of the fit statistics and estimates for uncertainties in pa-
rameters discussed in Goodness-of-Fit and estimated uncertainty and correlations are done only for the leastsq
method.

In particular, the simulated annealing method appears to not work correctly.... understanding this is on the ToDo list.

3.4 Goodness-of-Fit and estimated uncertainty and correlations

On a successful fit using the leastsq engine, several goodness-of-fit statistics and values related to the uncertainty in
the fitted variables will be calculated. These are all encapsulated in the Minimizer object for the fit, as returned by
minimize(). The values related to the entire fit are stored in attributes of the Minimizer object, as shown in Table
of Fit Results while those related to each fitted variables are stored as attributes of the corresponding Parameter.

Table of Fit Results: These values, including the standard Goodness-of-Fit statistics, are all attributes of
the Minimizer object returned by minimize().

Minimizer Attribute Description / Formula
nfev number of function evaluations
success boolean (True/False) for whether fit succeeded.
errorbars boolean (True/False) for whether uncertainties were estimated.
message message about fit success.
ier integer error value from scipy.optimize.leastsq
lmdif_message message from scipy.optimize.leastsq
nvarys number of variables in fit Nvarys

ndata number of data points: N
nfree degrees of freedom in fit: N −Nvarys

residual residual array (return of func(): Resid
chisqr chi-square: χ2 =

∑N
i [Residi]2

redchi reduced chi-square: χ2
ν = χ2/(N −Nvarys)

Note that the calculation of chi-square and reduced chi-square assume that the returned residual function is scaled
properly to the uncertainties in the data. For these statistics to be meaningful, the person writing the function to be
minimized must scale them properly.

After a fit using using the leastsq engine has completed succsessfully, standard errors for the fitted variables and
correlations between pairs of fitted variables are automatically calculated from the covariance matrix. The standard
error (estimated 1σ error-bar) go into the stderr attribute of the Parameter. The correlations with all other variables

3.4. Goodness-of-Fit and estimated uncertainty and correlations 11

http://en.wikipedia.org/wiki/Simulated_annealing
http://en.wikipedia.org/wiki/Limited-memory_BFGS

Least-Squares Minimization with Constraints for Python, Release 0.6

will be put into the correl attribute of the Parameter – a dictionary with keys for all other Parameters and values of
the corresponding correlation.

In some cases, it may not be possible to estimate the errors and correlations. For example, if a variable actually has no
practical effect on the fit, it will likely cause the covariance matrix to be singular, making standard errors impossible
to estimate. Placing bounds on varied Parameters makes it more likely that errors cannot be estimated, as being near
the maximum or minimum value makes the covariance matrix singular. In these cases, the errorbars attribute of
the fit result (Minimizer object) will be False.

3.5 Using the Minimizer class

For full control of the fitting process, you’ll want to create a Minimizer object, or at least use the one returned from
the minimize() function.

class Minimizer(function, params[, fcn_args=None[, fcn_kws=None[, **kws]]]])
creates a Minimizer, for fine-grain access to fitting methods and attributes.

Parameters

• function (callable.) – function to return fit residual. See Writing a Fitting Function for
details.

• params (dict) – a dictionary of Parameters. Keywords must be strings that match
[a-z_][a-z0-9_]* and is not a python reserved word. Each value must be
Parameter.

• fcn_args (tuple) – arguments tuple to pass to the residual function as positional arguments.

• fcn_kws (dict) – dictionary to pass to the residual function as keyword arguments.

• leastsq_kws (dict) – dictionary to pass to scipy.optimize.leastsq

Returns Minimizer object, which can be used to inspect goodness-of-fit statistics, or to re-run fit.

The Minimizer object has a few public methods:

leastsq(**kws)
perform fit with Levenberg-Marquardt algorithm. Keywords will be passed directly to scipy.optimize.leastsq.
By default, numerical derivatives are used, and the following arguments are set:

leastsq argument Default Value Description
xtol 1.e-7 Relative error in the approximate solution
ftol 1.e-7 Relative error in the desired sum of squares
maxfev 1000*(nvar+1) maximum number of function calls (nvar= # of variables)

anneal(**kws)
perform fit with Simulated Annealing. Keywords will be passed directly to scipy.optimize.anneal.

lbfgsb(**kws)
perform fit with L-BFGS-B algorithm. Keywords will be passed directly to scipy.optimize.fmin_l_bfgs_b.

prepare_fit(**kws)
prepares and initializes model and Parameters for subsequent fitting. This routine prepares the conversion of
Parameters into fit variables, organizes parameter bounds, and parses, checks and “compiles” constrain
expressions.

This is called directly by the fitting methods, and it is generally not necessary to call this function explicitly. An
exception is when you would like to call your function to minimize prior to running one of the minimization
routines, for example, to calculate the initial residual function. In that case, you might want to do something
like:

12 Chapter 3. Performing Fits, Analyzing Outputs

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.leastsq.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.anneal.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_l_bfgs_b.html

Least-Squares Minimization with Constraints for Python, Release 0.6

myfit = Minimizer(my_residual, params, fcn_args=(x,), fcn_kws={’data’:data})

myfit.prepare_fit()
init = my_residual(p_fit, x)
pylab.plot(x, init, ’b--’)

myfit.leastsq()

That is, this method should be called prior to your fitting function being called.

3.5. Using the Minimizer class 13

Least-Squares Minimization with Constraints for Python, Release 0.6

14 Chapter 3. Performing Fits, Analyzing Outputs

CHAPTER

FOUR

CALCULATION OF CONFIDENCE
INTERVALS

Since version 0.5, lmfit is also capable of calculating the confidence intervals directly. For most models, it is not
necessary: the estimation of the standard error from the estimated covariance matrix is normally quite good.

But for some models, e.g. a sum of two exponentials, the approximation begins to fail. For this case, lmfit has the
function conf_interval() to calculate confidence inverals directly. This is substantially slower than using the
errors estimated from the covariance matrix, but the results are more robust.

4.1 Method used for calculating confidence intervals

The F-test is used to compare our null model, which is the best fit we have found,with an alternate model, where one
of the parameters is fixed to a specific value. The value is changed until the differnce between χ2

0 and χ2
f can’t be

explained by the loss of a degree of freedom within a certain confidence.

F (Pfix, N − P) =

(
χ2
f

χ2
0

− 1

)
N − P
Pfix

N is the number of data-points, P the number of parameter of the null model. Pfix is the number of fixed parameters
(or to be more clear, the difference of number of parameters betweeen our null model and the alternate model).

A log-likelihood method will be added soon.

4.2 A basic example

First we create a toy problem:

In [1]: import lmfit

In [2]: import numpy as np

In [3]: x=np.linspace(0.3,10,100)

In [4]: y=1/(0.1*x)+2+0.1*np.random.randn(x.size)

In [5]: p=lmfit.Parameters()

In [6]: p.add_many((’a’,0.1),(’b’,1))

15

Least-Squares Minimization with Constraints for Python, Release 0.6

In [7]: def residual(p):
...: a=p[’a’].value
...: b=p[’b’].value
...: return 1/(a*x)+b-y
...:

We have to fit it, before we can generate the confidence intervals.

In [8]: mi=lmfit.minimize(residual, p)

In [9]: mi.leastsq()
Out[9]: True

In [10]: lmfit.printfuncs.report_errors(mi.params)
a: 0.099713 +/- 0.000193 (inital= 0.100000)
b: 1.988121 +/- 0.012165 (inital= 1.000000)

Correlations:
C(a, b) = 0.601

Now it just a simple function call to start the calculation:

In [11]: ci=lmfit.conf_interval(mi)

In [12]: lmfit.printfuncs.report_ci(ci)
99.70% 95.00% 67.40% 0.00% 67.40% 95.00% 99.70%

a 0.09894 0.09894 0.09894 0.09971 0.10049 0.10049 0.10049
99.70% 95.00% 67.40% 0.00% 67.40% 95.00% 99.70%

b 1.95151 1.96413 1.97643 1.98812 1.99981 2.01211 2.02473

As we can see, the estimated error is almost the same: it is not necessary to caclulate ci’s for this problem.

4.3 An advanced example

Now we look at a problem, where calculating the error from approximated covariance can lead to wrong results:

In [14]: y=3*np.exp(-x/2.)-5*np.exp(-x/10.)+0.2*np.random.randn(x.size)

In [15]: p=lmfit.Parameters()

In [16]: p.add_many((’a1’,5),(’a2’,-5),(’t1’,2),(’t2’,5))

In [17]: def residual(p):
....: a1,a2,t1,t2=[i.value for i in p.values()]
....: return a1*np.exp(-x/t1)+a2*np.exp(-x/t2)-y
....:

Now lets fit it:

In [18]: mi=lmfit.minimize(residual, p)

In [19]: mi.leastsq()
Out[19]: True

In [20]: lmfit.printfuncs.report_errors(mi.params, show_correl=False)
a1: 2.611014 +/- 0.327959 (inital= 5.000000)
a2: -4.512928 +/- 0.399194 (inital= -5.000000)

16 Chapter 4. Calculation of confidence intervals

Least-Squares Minimization with Constraints for Python, Release 0.6

t1: 1.569477 +/- 0.334505 (inital= 2.000000)
t2: 10.961366 +/- 1.263868 (inital= 5.000000)

Again we call conf_interval(), this time with tracing and only for 1- and 2-sigma:

In [21]: ci, trace = lmfit.conf_interval(mi,sigmas=[0.68,0.95],trace=True, verbose=0)

In [22]: lmfit.printfuncs.report_ci(ci)
95.00% 68.00% 0.00% 68.00% 95.00%

a1 2.11696 2.33696 2.61101 3.06631 4.28728
95.00% 68.00% 0.00% 68.00% 95.00%

a2 -6.39492 -5.05982 -4.51293 -4.19528 -3.97850
95.00% 68.00% 0.00% 68.00% 95.00%

t2 8.00414 9.62688 10.96137 12.17947 13.34824
95.00% 68.00% 0.00% 68.00% 95.00%

t1 1.07036 1.28482 1.56948 1.97534 2.64341

If you compare the calculated error estimates, you will see that the regular estimate is too small. Now let’s plot a
confidence region:

In [23]: import matplotlib.pylab as plt

In [24]: x, y, grid=lmfit.conf_interval2d(mi,’a1’,’t2’,30,30)

In [25]: plt.contourf(x,y,grid,np.linspace(0,1,11))
Out[25]: <matplotlib.contour.QuadContourSet instance at 0xa888d6c>

In [26]: plt.xlabel(’a1’);

In [27]: plt.colorbar();

In [28]: plt.ylabel(’t2’);

4.3. An advanced example 17

Least-Squares Minimization with Constraints for Python, Release 0.6

Remember the trace? It shows the dependence between two parameters.

In [33]: x,y,prob=trace[’a1’][’a1’], trace[’a1’][’t2’],trace[’a1’][’prob’]

In [34]: x2,y2,prob2=trace[’t2’][’t2’], trace[’t2’][’a1’],trace[’t2’][’prob’]

In [35]: plt.scatter(x,y,c=prob,s=30)
Out[35]: <matplotlib.collections.PathCollection at 0xab7cb6c>

In [36]: plt.scatter(x2,y2,c=prob2,s=30)
Out[36]: <matplotlib.collections.PathCollection at 0xab933ec>

18 Chapter 4. Calculation of confidence intervals

Least-Squares Minimization with Constraints for Python, Release 0.6

4.4 Documentation of methods

conf_interval(minimizer, p_names=None, sigmas=(0.67400000000000004, 0.94999999999999996,
0.997), trace=False, maxiter=200, verbose=False, prob_func=None)

Calculates the confidence interval for parameters from the given minimizer.

The parameter for which the ci is calculated will be varied, while the remaining parameters are reoptimized for
minimizing chi-square. The resulting chi-square is used to calculate the probability with a given statistic e.g.
F-statistic. This function uses a 1d-rootfinder from scipy to find the values resulting in the searched confidence
region.

Parameters minimizer : Minimizer

The minimizer to use, should be already fitted via leastsq.

p_names : list, optional

Names of the parameters for which the ci is calculated. If None, the ci is calculated for
every parameter.

sigmas : list, optional

The probabilities (1-alpha) to find. Default is 1,2 and 3-sigma.

4.4. Documentation of methods 19

Least-Squares Minimization with Constraints for Python, Release 0.6

trace : bool, optional

Defaults to False, if true, each result of a probability calculation is saved along with the
parameter. This can be used to plot so called “profile traces”.

Returns output : dict

A dict, which contains a list of (sigma, vals)-tuples for each name.

trace_dict : dict

Only if trace is set true. Is a dict, the key is the parameter which was fixed.The values
are again a dict with the names as keys, but with an additional key ‘prob’. Each contains
an array of the corresponding values.

Other Parameters maxiter : int

Maximum of iteration to find an upper limit.

prob_func : None or callable

Function to calculate the probality from the opimized chi-square. Default (None) uses
built-in f_compare (F test).

See Also:

conf_interval2d

Examples

>>> from lmfit.printfuncs import *
>>> mini=minimize(some_func, params)
>>> mini.leastsq()
True
>>> report_errors(params)
... #report
>>> ci=conf_interval(mini)
>>> report_ci(ci)
... #report

Now with quantils for the sigmas and using the trace.

>>> ci, trace=conf_interval(mini, sigmas=(0.25,0.5,0.75,0.999),trace=True)
>>> fixed=trace[’para1’][’para1’]
>>> free=trace[’para1’][’not_para1’]
>>> prob=trace[’para1’][’prob’]

This makes it possible to plot the dependence between free and fixed.

conf_interval2d(minimizer, x_name, y_name, nx=10, ny=10, limits=None, prob_func=None)
Calculates confidence regions for two fixed parameters.

The method is explained in conf_interval: here we are fixing two parameters.

Parameters minimizer : minimizer

The minimizer to use, should be already fitted via leastsq.

x_name : string

The name of the parameter which will be the x direction.

y_name : string

20 Chapter 4. Calculation of confidence intervals

Least-Squares Minimization with Constraints for Python, Release 0.6

The name of the parameter which will be the y direction.

nx, ny : ints, optional

Number of points.

limits : tuple: optional

Should have the form ((x_upper, x_lower),(y_upper, y_lower)). If not given, the default
is 5 stderrs in each direction.

Returns x : (nx)-array

x-coordinates

y : (ny)-array

y-coordinates

grid : (nx,ny)-array

grid contains the calculated probabilities.

Other Parameters prob_func : None or callable

Function to calculate the probality from the opimized chi-square. Default (None) uses
built-in f_compare (F test).

Examples

>>> from lmfit.printfuncs import *
>>> mini=minimize(some_func, params)
>>> mini.leastsq()
True
>>> x,y,gr=conf_interval2d(’para1’,’para2’)
>>> plt.contour(x,y,gr)

4.4. Documentation of methods 21

Least-Squares Minimization with Constraints for Python, Release 0.6

22 Chapter 4. Calculation of confidence intervals

CHAPTER

FIVE

BOUNDS IMPLEMENTATION

This section describes the implementation of Parameter bounds. The MINPACK-1 implementation used in
scipy.optimize.leastsq for the Levenberg-Marquardt algorithm does not explicitly support bounds on parameters, and
expects to be able to fully explore the available range of values for any Parameter. Simply placing hard constraints
(that is, resetting the value when it exceeds the desired bounds) prevents the algorithm from determining the partial
derivatives, and leads to unstable results.

Instead of placing such hard constraints, bounded parameters are mathematically transformed using the formulation
devised (and documented) for MINUIT. This is implemented following (and borrowing heavily from) the leastsqbound
from J. J. Helmus. Parameter values are mapped from internally used, freely variable values Pinternal to bounded
parameters Pbounded. When both min and max bounds are specified, the mapping is

Pinternal = arcsin
(2(Pbounded −min)

(max−min)
− 1
)

Pbounded = min +
(
sin(Pinternal) + 1

) (max−min)
2

With only an upper limit max supplied, but min left unbounded, the mapping is:

Pinternal =
√

(max− Pbounded + 1)2 − 1

Pbounded = max + 1−
√
P 2

internal + 1

With only a lower limit min supplied, but max left unbounded, the mapping is:

Pinternal =
√

(Pbounded −min + 1)2 − 1

Pbounded = min− 1 +
√
P 2

internal + 1

With these mappings, the value for the bounded Parameter cannot exceed the specified bounds, though the internally
varied value can be freely varied.

It bears repeating that code from leastsqbound was adopted to implement the transformation described above. The
challenging part (Thanks again to Jonathan J. Helmus!) here is to re-transform the covariance matrix so that the
uncertainties can be estimated for bounded Parameters. This is included by using the derivate dPinternal/dPbounded

from the equations above to re-scale the jacobian matrix before constructing the covariance matrix from it. Tests
show that this re-scaling of the covariance matrix works quite well, and that uncertainties estimated for bounded are
quite reasonable. Of course, if the best fit value is very close to a boundary, the derivative estimated uncertainty and
correlations for that parameter may not be reliable.

The MINUIT documentation recommends caution in using bounds. Setting bounds can certainly increase the number
of function evaluations (and so computation time), and in some cases may cause some instabilities, as the range of
acceptable parameter values is not fully explored. On the other hand, prelminary tests suggest that using max and min
to set clearly outlandish bounds does not greatly affect performance or results.

23

http://en.wikipedia.org/wiki/MINPACK
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.leastsq.html
http://en.wikipedia.org/wiki/MINUIT
https://github.com/jjhelmus/leastsqbound-scipy
https://github.com/jjhelmus/leastsqbound-scipy
http://en.wikipedia.org/wiki/MINUIT

Least-Squares Minimization with Constraints for Python, Release 0.6

24 Chapter 5. Bounds Implementation

CHAPTER

SIX

USING MATHEMATICAL CONSTRAINTS

While being able to fix variables and place upper and lower bounds on their values are key parts of lmfit, the ability to
place mathematical constraints on parameters is also highly desirable. This section describes how to do this, and what
sort of parameterizations are possible – see the asteval for further documentation.

6.1 Overview

Just as one can place bounds on a Parameter, or keep it fixed during the fit, so too can one place mathematical
constraints on parameters. The way this is done with lmfit is to write a Parameter as a mathematical expression of
the other parameters and a set of pre-defined operators and functions. The constraint expressions are simple Python
statements, allowing one to place constraints like:

pars = Parameters()
pars.add(’frac_curve1’, value=0.5, min=0, max=1)
pars.add(’frac_curve2’, expr=’1-frac_curve1’)

as the value of the frac_curve1 parameter is updated at each step in the fit, the value of frac_curve2 will be updated so
that the two values are constrained to add to 1.0. Of course, such a constraint could be placed in the fitting function,
but the use of such constraints allows the end-user to modify the model of a more general-purpose fitting function.

Nearly any valid mathematical expression can be used, and a variety of built-in functions are available for flexible
modeling.

6.2 Supported Operators, Functions, and Constants

The mathematical expressions used to define constrained Parameters need to be valid python expressions. As you’d
expect, the operators ‘+’, ‘-‘, ‘*’, ‘/’, ‘**’, are supported. In fact, a much more complete set can be used, including
Python’s bit- and logical operators:

+, -, *, /, **, &, |, ^, <<, >>, %, and, or,
==, >, >=, <, <=, !=, ~, not, is, is not, in, not in

The values for e (2.7182818...) and pi (3.1415926...) are available, as are several supported mathematical and trigono-
metric function:

abs, acos, acosh, asin, asinh, atan, atan2, atanh, ceil, copysign, cos, cosh, degrees, exp,
fabs, factorial, floor, fmod, frexp, fsum, hypot, isinf, isnan, ldexp, log, log10, log1p,
max, min, modf, pow, radians, sin, sinh, sqrt, tan, tanh, trunc

25

http://newville.github.com/asteval/

Least-Squares Minimization with Constraints for Python, Release 0.6

In addition, all Parameter names will be available in the mathematical expressions. Thus, with parameters for a few
peak-like functions:

pars = Parameters()
pars.add(’amp_1’, value=0.5, min=0, max=1)
pars.add(’cen_1’, value=2.2)
pars.add(’wid_1’, value=0.2)

The following expression are all valid:

pars.add(’amp_2’, expr=’(2.0 - amp_1**2)’)
pars.add(’cen_2’, expr=’cen_1 * wid_2 / max(wid_1, 0.001)’)
pars.add(’wid_2’, expr=’sqrt(pi)*wid_1’)

In fact, almost any valid Python expression is allowed. A notable example is that Python’s 1-line if expression is
supported:

pars.add(’bounded’, expr=’param_a if test_val/2. > 100 else param_b’)

which is equivalent to the more familiar:

if test_val/2. > 100:
bounded = param_a

else:
bounded = param_b

6.3 Advanced usage of Expressions in lmfit

The expression is converted to a Python Abstract Syntax Tree, which is an intermediate version of the expression –
a syntax-checked, partially compiled expression. Among other things, this means that Python’s own parser is used
to parse and convert the expression into something that can easily be evaluated within Python. It also means that the
symbols in the expressions can point to any Python object.

In fact, the use of Python’s AST allows a nearly full version of Python to be supported, without using Python’s
built-in eval() function. The asteval module actually supports most Python syntax, including for- and while-loops,
conditional expressions, and user-defined functions. There are several unsupported Python constructs, most notably
the class statement, so that new classes cannot be created, and the import statement, which helps make the asteval
module safe from malicious use.

One important feature of the asteval module is that you can add domain-specific functions into the it, for later use in
constraint expressions. To do this, you would use the asteval attribute of the Minimizer class, which contains
a complete AST interpreter. The asteval interpreter uses a flat namespace, implemented as a single dictionary. That
means you can preload any Python symbol into the namespace for the constraints:

def lorenztian(x, amp, cen, wid):
"lorenztian function: wid = half-width at half-max"
return (amp / (1 + ((x-cen)/wid)**2))

fitter = Minimizer()
fitter.asteval.symtable[’lorenztian’] = lorenztian

and this lorenztian() function can now be used in constraint expressions.

26 Chapter 6. Using Mathematical Constraints

http://docs.python.org/library/ast.html
http://newville.github.com/asteval/
http://newville.github.com/asteval/
http://newville.github.com/asteval/
http://newville.github.com/asteval/

PYTHON MODULE INDEX

c
confidence, 15

27

Least-Squares Minimization with Constraints for Python, Release 0.6

28 Python Module Index

PYTHON MODULE INDEX

c
confidence, 15

29

Least-Squares Minimization with Constraints for Python, Release 0.6

30 Python Module Index

INDEX

A
add(), 7
add_many(), 7
anneal(), 12

C
conf_interval() (in module confidence), 19
conf_interval2d() (in module confidence), 20
confidence (module), 15
correl, 7

L
lbfgsb(), 12
leastsq(), 12

M
minimize() (built-in function), 9
Minimizer (built-in class), 12

P
Parameter (built-in class), 7
Parameters (built-in class), 7
prepare_fit(), 12

S
stderr, 7

31

	Downloading and Installation
	Prerequisites
	Downloads
	Development Version
	Installation
	Acknowledgements
	License

	Getting started with Non-Linear Least-Squares Fitting
	Using Parameters instead of Variables
	The Parameter class
	The Parameters class
	Simple Example

	Performing Fits, Analyzing Outputs
	The minimize() function
	Writing a Fitting Function
	Choosing Different Fitting Engines
	Goodness-of-Fit and estimated uncertainty and correlations
	Using the Minimizer class

	Calculation of confidence intervals
	Method used for calculating confidence intervals
	A basic example
	An advanced example
	Documentation of methods

	Bounds Implementation
	Using Mathematical Constraints
	Overview
	Supported Operators, Functions, and Constants
	Advanced usage of Expressions in lmfit

	Python Module Index
	Python Module Index
	Index

