
Kapok: An Open Source Python Toolbox for
PolInSAR Forest Height Estimation Using UAVSAR

Data

User’s Manual

Version 0.2

Michael Denbina

July 20, 2017

1

Contents

1 Introduction 3

2 Installation and Setup 4

3 Getting Started 6

4 Data Organization 20

5 Module Reference 22
5.1 kapok (Core Functionality) . 22
5.2 uavsar (UAVSAR Data Import) 23
5.3 vis (Data Visualization) . 23
5.4 cohopt (Coherence Optimization) 23
5.5 region (Coherence Region Plotting) 23
5.6 topo (Topography Estimation) 24
5.7 sinc (Sinc Forest Model) . 24
5.8 rvog (Random Volume over Ground Forest Model) 24
5.9 geo (Geocoding) . 24

Bibliography 26

2

Chapter 1

Introduction

Kapok is a Python library designed to aid in the post-processing, analysis, and
use of polarimetric interferometric synthetic aperture radar (PolInSAR) data
for ecological study and parameter retrieval. Currently, the main focus of the
included modules is on forest height estimation. A couple of basic PolInSAR
forest models from the literature are implemented, including inversion routines
which allow forest height to be estimated from the PolInSAR data. As well,
the toolbox aims to provide a unified framework for easy manipulation and
analysis of PolInSAR data, allowing the user to focus on model and algorithm
development rather than on basic operations like covariance matrix calculation
or file I/O.

Currently, only data from NASA’s Uninhabited Aerial Vehicle Synthetic
Aperture Radar (UAVSAR) instrument is supported, through a module which
imports the UAVSAR data into the data format used by Kapok. Other plat-
forms could be implemented through the creation of new modules which trans-
late other formats. Kapok stores the PolInSAR data on disk using the open
source HDF5 data format, allowing easy manipulation, addressing, and slicing
of the data, as well as file compression. The various PolInSAR data (e.g., the
covariance matrix, the optimized coherences, the parameters of the viewing
geometry, etc.) are stored as intuitive multi-dimensional datasets, all within
a single HDF5 file for each scene. Both single-baseline and multi-baseline
datasets can be imported, for PolInSAR data with an arbitrary number of
flight tracks.

For the most up to date version of the software, as well as release notes,
bug tracking, etc., please visit Kapok’s GitHub repository. You can also visit
Kapok’s page on the Python Package Index.

3

https://github.com/mdenbina/kapok
https://pypi.python.org/pypi/kapok

Chapter 2

Installation and Setup

Kapok was developed for Python 3.X, and has the following dependencies:

• NumPy

• SciPy

• h5py

• matplotlib

• Cython

• GDAL

• pyresample

Kapok uses GDAL to convert to/from various GIS-ready raster formats.
Please ensure that the program “gdal translate” is callable from the command
line if you wish to export any geocoded data products. If “gdal translate” is not
callable from the command line, the program can be installed from gdal.org.

The use of a package manager to install the above dependencies can be
helpful, such as conda.

Alternatively, Kapok can be installed using pip, which will also attempt to
install any missing dependencies.

There are a few different methods for installing Kapok. The latest released
build can be installed from the Python Package Index, by running the following
in a terminal:

pip i n s t a l l kapok

The most updated version of the source code can be installed directly from
the GitHub repository:

pip i n s t a l l g i t+https : // github . com/mdenbina/kapok . g i t

4

http://www.numpy.org/
http://www.scipy.org/scipylib/index.html
http://www.h5py.org/
http://matplotlib.org/
http://cython.org/
http://pypi.python.org/pypi/GDAL/
https://pyresample.readthedocs.io/en/latest/
http://www.gdal.org/
http://conda.pydata.org/
https://pip.pypa.io/en/latest/installing/

CHAPTER 2. INSTALLATION AND SETUP 5

If you wish to modify the source code, you can download the source code to
a directory of your choice, then navigate to that directory in a terminal window
and run the command:

pip i n s t a l l −e .

This will install the Kapok package in the current directory in “editable”
mode. In “editable” mode, the source code will be loaded whenever Kapok is
imported into the Python environment.

For more information on installing Python packages, see the documentation
here.

Once installed, the command “import kapok” in the Python console will
then import the core functionality of the library. Kapok contains a number
of different modules which are described in detail in Chapter 5. The following
chapter gives an overview of the Kapok software in the form of a walkthrough of
the standard processing steps, from importing the UAVSAR data to exporting
a geocoded map of forest height estimates.

https://packaging.python.org/tutorials/installing-packages/

Chapter 3

Getting Started

In this section, we will work through a basic processing chain involving the
following steps: data import, some basic data visualization, coherence calcu-
lation, coherence optimization, forest height estimation, and geocoding of the
estimated forest heights. For reference, see the “basic example.py” script in
the examples directory. This section is a walk through of the same concepts in
that example script, though in this document we generally go into more details
regarding the different options available.

UAVSAR PolInSAR datasets come in the form of a collection of .slc (single-
look complex) files which are flat binary files containing the complex-valued
reflectivity for each pixel. There will be one .slc file for each polarization (HH,
HV, VH, and VV), for each flight track. A baseline can be formed by pairing up
any two different tracks. Along with the .slc files will be .llh files containing the
latitude, longitude, and digital elevation model (DEM) values for each pixel.
The DEM heights are from the DEM used by the UAVSAR processor, which is
generally the SRTM DEM. These parameters, of course, do not depend on the
polarization or track number. There will also be a .lkv file containing the look
vector between each pixel and the reference track in ENU (East, North, Up)
coordinates. There are also .baseline files containing the baseline information
for each flight track, for each azimuth index of the image. For each .slc file
there will also be an annotation file with the extension .ann containing the
metadata information, including a list of all the tracks in the processed stack.

UAVSAR data can be downloaded from https://uavsar.jpl.nasa.gov. How-
ever, note that most of the UAVSAR datasets available for download are not
suitable for use with Kapok. Most of the data is in the form of “PolSAR”
or polarimetric SAR datasets, which do not consist of the spatially separated
interferometric data necessary for PolInSAR forest height retrieval. In the
UAVSAR Data Search page, under the list of “Processing modes”, make sure
that “TomoSAR” is selected. This should filter the list down to the data
suitable for use with Kapok. Note that as of the time of writing this doc-
ument, there are only four datasets available, all of which were collected as
part of NASA’s 2016 AfriSAR campaign in Gabon. More information on this

6

https://uavsar.jpl.nasa.gov

CHAPTER 3. GETTING STARTED 7

campaign is available here and here. However, more data will be available in
the future. Note that you can technically load “SLC Stack” data downloaded
from the UAVSAR website into Kapok as well. However, these datasets gener-
ally consist of zero-baseline repeat pass interferometric data, and are used for
surface deformation and other differential interferometry applications. They
would not generally be expected to be of use for forest height retrieval due to
the short baseline length (and resulting lack of interferometric phase sensitiv-
ity to vertical height). However, the data import, coherence calculation, etc.,
functionality of Kapok should still function on these datasets.

The kapok.uavsar module handles the import of the downloaded UAVSAR
data into a single HDF5 file, calculating the products (such as the covariance
matrix elements, and the kz and incidence angle values) necessary for further
analysis. Before we proceed, note that all of the Kapok functions have function
headers describing their purpose, input arguments, and return values. These
are all readily accessible through Python’s built-in help system (e.g., using
“help(functionname)” in a Python shell).

We begin by navigating to the folder containing the downloaded UAVSAR
data, and invoking a Python shell (ipython is recommended). For the purposes
of this tutorial, we have downloaded the UAVSAR data for Pongara National
Park, Gabon, available here. However, any UAVSAR TomoSAR dataset will
be sufficient. Feel free to use whichever study area looks the most interesting
to you.

The Python shell can be invoked using “python” in a terminal window, or
“ipython” to invoke the Interactive Python shell (recommended). We then im-
port the kapok module, and the kapok.uavsar module, then use the kapok.uavsar.load()
function in order to import the UAVSAR data into a Kapok HDF5 file. After
import, this function loads the data into a Kapok Scene object, and returns
the result.

import kapok
import kapok . uavsar

scene = kapok . uavsar . load ('
pongar 27500 16009 002 160227 L090HH 01 BU . ann ' , ' pongara . h5 ' ,
compress ion= ' gz ip ' , compress ion opts=4, mlwin=[20 ,5])

‘pongar 27500 16009 002 160227 L090HH 01 BU.ann’ is the UAVSAR an-
notation filename for the first track, which will depend on the UAVSAR dataset
we are working with. ‘pongara.h5’ is the output file where the resulting co-
variance matrix, incidence angle, kz, and other imported data will be stored.
This file will be created by the program. If the file already exists, an error
message will be given. The compression keyword tells the function that we
wish to use gzip to compress the imported datasets. This can be set to None if
compression is not desired. The compression opts keyword argument is an
integer from 0 to 9, specifying the amount of compression to perform. Higher
numbers result in more compression, with lower file size but increased CPU
usage. The default value is 4. The mlwin keyword specifies the size of the

https://climate.nasa.gov/news/2405/nasa-partner-space-agencies-measure-forests-in-gabon/
https://www.nasa.gov/feature/goddard/2016/nasa-partner-space-agencies-measure-forests-in-gabon
https://ipython.org/
https://uavsar.jpl.nasa.gov/cgi-bin/product.pl?jobName=pongar_TM275_01

CHAPTER 3. GETTING STARTED 8

multi-looking window (in azimuth, then range indices). The default value of
[20,5] uses a window with 20 pixels in azimuth and 5 pixels in slant range.
Using the standard UAVSAR pixel spacing, this will produce multi-looked im-
agery with pixel spacing of 12 m in azimuth and 8.3 m in slant range. Larger
windows generally produce smoother phase values, but will also result in larger
pixel sizes, worsening the spatial resolution.

For large datasets containing many tracks, this function can take a while to
run. If we wish to only import a subset of the data, the azbounds and rng-
bounds keyword arguments can be given to the kapok.uavsar.load function.
Each keyword argument should be a two-element list with the minimum and
mazimum azimuth and range bounds of the desired subset. Similarly, if one
wishes to import certain tracks, but not others, the tracks keyword argument
can be provided. This should be a list containing all the track indices (starting
at zero) that are specified for import. ‘tracks=[0,1]’ would import the first two
tracks, but none of the others, for example, while ‘tracks=[0,2]’ would import
the first and third tracks only. The order of the tracks is the same as in the
annotation file, which will generally (but not always!) be ordered by time of
acquisition.

For example, if we only wanted to import data for the first two tracks,
for SLC rows from 15000–35000, and SLC columns from 1000–6000, we could
execute the following command:

scene = kapok . uavsar . load ('
pongar 27500 16009 002 160227 L090HH 01 BU . ann ' , '
pongara subset . h5 ' , t r a ck s =[0 ,1] , azbounds =[15000 ,35000] ,
rngbounds =[1000 ,6000])

You might be asking yourself, how do you know which SLC rows and
columns correspond to the subset of the data that you are interested in? We
can use the quicklook function of Kapok’s UAVSAR module to produce a plot
of radar backscatter before going through the time consuming data import
process. This can be done as follows:

kapok . uavsar . qu i ck look (' pongar 27500 16009 002 160227 L090HH 01 BU
. ann ' , t r =0, po l= 'hv ' , mlwin=(40 ,10) , s a v e f i l e= ' pongara\ hv\
qu i ck l ook . png ')

This will display the HV polarization backscatter for the UAVSAR dataset
described by the given annotation file, and save the resulting plot under the
filename ‘pongara hv quicklook.png’. The tr keyword specifies the track of
interest (defaulting to the first track), and mlwin specifies the multilooking
window in the (azimuth,range) dimensions used to reduce the plotsize.

For the purposes of this tutorial, it will be helpful to use a small subset
of the data, as this will greatly increase the computation time of the various
functions, and allow easier experimentation and iteration with each step.

Once we have begun to import the data using kapok.uavsar.load(), the
program will provide progress updates to the Python console as it proceeds.
The UAVSAR data is imported in the following order: metadata, covariance

CHAPTER 3. GETTING STARTED 9

matrix, latitude/longitude/DEM, and finally platform and viewing geometry
(from which the vertical wavenumber and incidence angle values are calcu-
lated). The interferometric vertical wavenumber, or kz parameter, can either
be loaded from ’.kz’ files downloaded with the rest of the UAVSAR TomoSAR
stack, or it can be calculated from the ‘.lkv’ and ‘.baseline’ files. The default
behaviour of kapok.uavsar.load() is to import the downloaded files if they exist
in the data directory. If you wish to calculate the kz values, you can set the
kzcalc keyword argument to True in kapok.uavsar.load():

scene = kapok . uavsar . load ('
pongar 27500 16009 002 160227 L090HH 01 BU . ann ' , ' pongara . h5 ' ,
k z ca l c=True)

Note that the kz values downloaded from the UAVSAR website are cor-
rected for topography using the SRTM DEM. The kz values calculated by
Kapok are estimated for a flat earth, though the effects of the range slope
terrain angle can later be corrected for when estimating the forest heights (dis-
cussed later in this chapter).

Once the function has completed, a Kapok Scene object will be returned,
which here we have called “scene” for simplicity.

After a Kapok Scene HDF5 file has been created, we can quickly and easily
load it in without needing to use the kapok.uavsar module. To demonstrate
this, we are going to clear the Scene object from memory (which, in the process,
closes the HDF5 file):

de l scene

Note that it can be a good idea make backup copies of the HDF5 file,
particularly if we are working with a large dataset that takes a large amount of
time to import/process. We now load our newly created HDF5 file as follows:

scene = kapok . Scene (' pongara . h5 ')

The Kapok Scene object contains easy access to all aspects of the PolInSAR
dataset, and allows most of the processing functionality through its methods.
This object-oriented interface is generally the easiest way to perform the stan-
dard processing steps. If more control over the process is desired, the underlying
functions can be accessed directly, and we will provide an example of this a bit
later in this chapter. For now, we will give an overview of most of the basic
methods in the Scene class.

First, let’s do some simple visualization of the data. This is performed
through the kapok.vis module, which is accessed through the Scene show
method. Here are a few examples:

scene . show (' pau l i ') # Paul i RGB Image
scene . show (' coh ') # Complex Coherence Image
scene . show (' coh ' , po l= 'HV ') # Same , but f o r the HV po l a r i z a t i o n .

CHAPTER 3. GETTING STARTED 10

The first argument to scene.show() is called the image type. ‘pauli’ shows
a Pauli RGB image, ‘coh’ shows a complex coherence image, ‘power’ or ‘pow’
shows an image of the backscattered power in dB, etc. There are a lot more
options, some of which we will discuss in the following, and many of which are
only relevant for certain image types. See the function header for more details
using help(kapok.Scene.show).

Complex coherences are displayed using the HSV color system, with the
hue set by the phase of the complex coherence, and the saturation and value
set by the magnitude of the complex coherence. This means that pixels with
a high coherence magnitude will appear as bright, vibrant colors, with the
specific color depending on the phase. Pixels with lower coherence magnitude,
where we would expect the phases to be noisier, will appear dark gray and
desaturated.

If you wish to view an image of the coherence magnitude or phase by them-
selves, you can do so using the following syntax:

scene . show (' coh mag ')
scene . show (' coh ph ')

Note that if scene.show(‘coh’) is called without any further arguments, the
default polarization to display is HH. This is also true for scene.show(‘power’)—
an image of the HH backscattered power is displayed. Similarly, if one is
working with multi-baseline data, there is a bl keyword argument which spec-
ifies the baseline number of interest (starting at zero). By default, the first
baseline is displayed (which has a baseline index of zero, not one). For exam-
ple, scene.show(‘coh’,bl=1) will show the complex coherence for the second
baseline, for the HH polarization.

What if we’d like to show only a subset of the entire PolInSAR scene? This
can be accomplished through the bounds keyword:

scene . show (' pau l i ' , bounds=(2000 ,3500 ,250 ,1250))
scene . show (' pau l i ' , bounds=(2000 ,3500))

When bounds contains four elements as in the first example, it is interpreted
as the (starting azimuth, ending azimuth, starting range, ending range) indices
to display. When bounds contains two elements as in the second example, it
is interpreted as (starting azimuth, ending azimuth), with the plotted image
spanning the full swath in the range direction. These indices are for the multi-
looked PolInSAR data, not the original SLC imagery.

If we’d like to save the plotted image to disk, we can use the savefile
keyword, which specifies the desired filename:

scene . show (' pau l i ' , s a v e f i l e= ' pau l i . png ')
scene . show (' pau l i ' , bounds=(2000 ,3500) , s a v e f i l e= ' pau l i s ub s e t . png

')

We can also display the DEM height, incidence angle, and the kz values:

CHAPTER 3. GETTING STARTED 11

scene . show ('dem ') # DEM Heights
scene . show (' i n c ') # Inc idence Angle
scene . show (' kz ') # kz (f o r the f i r s t b a s e l i n e)

If the default colormap bounds are too small or large, the minimum and
maximum values can be set using the vmin and vmax keywords:

scene . show ('pow ' , po l= 'HV ')
scene . show ('pow ' , po l= 'HV ' , vmin=−30, vmax=−6)

The second example will show the HV backscattered power, using a col-
ormap ranging from -30 dB to -6 dB. The first example uses the default values
(-25 dB and -3 dB, respectively). By default, power and Pauli RGB images are
shown for the first track. The desired track index can be specified using the tr
keyword:

scene . show ('pow ' , po l= 'HV ' , t r =0)
scene . show ('pow ' , po l= 'HV ' , t r =1)

The first example shows the first (master) track, while the second example
shows the second (slave) track. Note that if we are opening a lot of figures,
especially ones we are saving to disk and do not need to view, we can close all
currently open figures using scene.show(‘close’).

Coherence region plotting can be performed using the kapok.region module,
accessed using the Scene region method. For example:

scene . r eg i on (2150 ,615)

The first argument is the azimuth index of the pixel to plot, and the second
argument is the range index. Note that this method also supports the savefile
keyword, if one wishes to save the coherence region plot. An example plot is
shown in Fig. 3.1. The region itself is shown as the solid blue line. Each of
the standard lexicographic and Pauli basis coherences are plotted as a different
colored dot. The HV coherence is shown in light green. Note the dark green
and brown dots located on the edge of the coherence region. These are the
coherences calculated using phase diversity coherence optimization—they are
the complex coherences with maximum separation in the complex plane. In
theory, the ‘high’ coherence shown in dark green has the lowest ground contri-
bution of any polarization in the data. The ‘low’ coherence shown in brown, in
contrast, has the highest ground contribution. The dashed green line is the line
fitted to these optimized coherences. At the points where this line intersects
the unit circle, there are two coherences plotted, one in black, and one in or-
ange. The black dot is the ground coherence chosen by the algorithm, while the
orange dot is the other alternate ground solution which was discarded. Note
that while the HV coherence is close to the optimized high coherence, they are
not equal. While the HV coherence will often (though not always!) contain a

CHAPTER 3. GETTING STARTED 12

Figure 3.1: An example coherence region plot.

small amount of ground backscattering compared to most of the other polar-
izations, it is almost never the polarization with the absolute smallest amount
of ground backscattering out of all possible polarization states. This is why
coherence optimization can be useful.

The region method can also be used to create an interactive coherence
region. These plots will have sliders on the bottom with which the user can
input the parameters of the Random Volume over Ground (RVoG) model. The
modelled coherences will be displayed on the plot, and updated in real-time.
This allows the user to manually estimate the forest height, extinction, and
temporal decorrelation parameter values that provide a good fit to the data.
This can be called using:

scene . r eg i on ()
scene . r eg i on (2150 ,615 , ' i n t e r a c t i v e ')

In the first example, if no arguments are provided, the software will default
to a blank interactive coherence region, since there is no actual data to plot (but
the modelled coherences will still be displayed, and can be adjusted through the
user interface). In the second example, this produces the same coherence region
plot as before, but with the interactive functionality. This window is shown

CHAPTER 3. GETTING STARTED 13

in Fig. 3.2 (note that we’ve zoomed in to the coherence region). The “hv”
slider specifies the forest height, hv, in meters. The “Ext.” slider specifies the
extinction parameter, σx, in dB/m. The “Mu” slider specifies the ground-to-
volume scattering ratio, µ. Note that one of the black X markers will always be
the volume coherence (with µ = 0). The µ slider adjusts the ground-to-volume
ratio for the other black X marker. The “Alpha” slider specifies the temporal
decorrelation magnitude of the volume coherence, αvt [1].

The dashed black line shows the modelled volume coherences for a range of
forest height values, starting at 0 m (at the ground coherence) and increasing
towards the specified hv slider value. The volume coherence is shown at the
end of this dashed black line with a black X. The solid black line then connects
the volume coherence to the modelled coherence with the ground-to-volume
ratio specified by the “Mu” slider, which is plotted with another black X.
Note that in this plot, we have adjusted the model parameter values to fit
the data, assuming that the volume coherence is equal to the optimized high
coherence, and neglecting the effects of temporal decorrelation (the “Alpha”
slider set to 1.0). In this case, the estimated forest height is approximately
44 m. The assumptions we have made (of zero ground contribution in the
high coherence, and negligible temporal decorrelation) are not necessarily true.
Note that different forest height values could be found by varying the parameter
sliders which still fit the observations. For more information on PolInSAR, the
RVoG model, and the line fit ground procedure, the reader may refer to [1, 2].
For more on the coherence optimization procedure, the reader may refer to
[3, 4, 5].

While fitting the RVoG model parameters for a single pixel using the in-
teractive plot can be helpful for illustrating and understanding the model,
eventually we are going to want to derive a forest height map for the entire
image. To start, we will perform the phase diversity coherence optimization
procedure for the whole image using the Scene opt method:

scene . opt ()

For large datasets the coherence optimization procedure can take some time,
as it needs to run for each baseline in the dataset. It will print periodic progress
updates to the console. Once it is finished, the optimized coherences will be
saved as a dataset within the HDF5 file and can be accessed through the Scene
object using the coh method.

high = scene . coh (pol= ' high ')
low = scene . coh (pol= ' low ')

The coh method returns the specified coherence as a NumPy array. Note
that the pol keyword can also be set to ‘HH’, ‘HV’, ‘HH-VV’, etc., or to a three
element array containing the complex weights for each polarization channel (in
the order HH, HV, VV). The desired baseline can be specified using the bl
keyword, such as:

CHAPTER 3. GETTING STARTED 14

Figure 3.2: An example interactive coherence region plot.

h igh b l0 = scene . coh (pol= ' high ' , b l=0)
h i gh b l 2 = scene . coh (pol= ' high ' , b l=2)

You might be wondering how the baselines are indexed in Kapok. They are
indexed based on the position of that baseline’s polarimetric-interferometric
covariance matrix in the total multi-baseline covariance matrix. For more in-
formation on multi-baseline PolInSAR, the reader may find [6] to be of interest.
For a PolInSAR dataset consisting of M flight tracks, the baselines are indexed
in Kapok as follows in CMB , the multi-baseline PolInSAR covariance matrix:

CMB =



C1 Ω0 Ω1 Ω3 . . . ΩN−3

C2 Ω2 Ω4 . . . ΩN−2

C3 Ω5 . . . ΩN−1

C4 . . . ΩN

. . .
...

CM


(3.1)

Cm is the polarimetric covariance matrix for track m (with m total tracks

CHAPTER 3. GETTING STARTED 15

in the dataset), and Ωn is the polarimetric interferometric covariance matrix
for baseline index n (with N total baselines in the dataset). The baselines are
indexed in this way so that adding additional flight tracks will never change the
indices of existing baselines. That is, baseline index 0 will always pair primary
track 0 with secondary track 1, baseline index 3 will always pair primary track
0 with secondary track 3, baseline index 5 will always pair primary track 2 with
secondary track 3, etc.

Now, let us proceed to the forest height estimation itself. Model inversion
is done using the Scene inv method. An example usage for the RVoG model
inversion is:

rvog = scene . inv (method= ' rvog ' , name= ' rvog ' , desc= 'RVoG, hv and
ext . f r e e parameters , no temporal d e c o r r e l a t i o n . ' , b l= ' a l l ')

The first argument, method, specifies the forest height inversion method.
The valid values for this argument are ‘rvog’, ‘sinc’ (for the sinc coherence
model alone [7]), or ‘sincphase’ (for the sinc and phase difference model [7]).
Note that if no argument is specified, the RVoG model is the default. The
next keyword, name, specifies a name for the dataset that will be created to
contain the estimated model parameter values. By default, this is equal to
method. The desc keyword lets us provide a string describing the model
inversion which will be saved as an attribute to the HDF5 group containing
the model inversion results. The bl keyword specifies which baselines will
be used in the inversion process. The default, ‘all’, uses all baselines (but
automatically excludes kz values below a threshold, to avoid estimating forest
heights from differential interferometry). The user can also provide a list of
integers to this keyword, to perform the inversion for a particular subset of
available baselines. If a single integer is supplied, single-baseline inversion will
be performed for that baseline alone. When performing an inversion which
includes multiple baselines, the software chooses between baselines using a
user-specified baseline quality criteria, which can be set using the blcriteria
keyword. Possible values for this keyword are ‘prod’ (the default), ‘var’ (to use
the Cramer-Rao Lower Bound of the phase center height variance), or ‘ecc’ (to
use the eccentricity of the coherence region). For more details on these options,
see help(kapok.rvog.rvogblselect).

Note that the HDF5 file is accessible through the Scene object directly,
using scene.f. However, the Scene object also has a convenient get method
for accessing HDF5 datasets contained within the file. Model inversion results
are stored in the HDF5 file in the ‘products’ group. Each model inversion is
stored as a group, and contains datasets for each of the optimized parameters.
The forest heights from the ‘rvog’ model inversion and the individual optimized
parameters can therefore be accessed as follows:

rvog hv = scene . f [' products / rvog/hv ']
rvog hv = scene . get (' products / rvog/hv ')
rvog hv = scene . get (' rvog/hv ')

rvog ext = scene . f [' products / rvog/ ext ']

CHAPTER 3. GETTING STARTED 16

rvog ext = scene . get (' products / rvog/ ext ')
rvog ext = scene . get (' rvog/ ext ')

The three methods of getting the estimated forest height and extinction
values are equivalent (the get method can either be given the full path to the
desired dataset, or an abridged path, with the ‘products/’ group assumed).
Note that the extinction values stored in the HDF5 file, and calculated by the
RVoG model, are in units of Np/m, not dB/m.

Instead of the RVoG model, if we wished to invert the sinc model, we could
do so using the following syntax:

s i n c = scene . inv (' s i n c ' , name= ' s i n cmode l t e s t ' , desc= ' Sinc
coherence model . ')

We can display and save plots of the estimated forest heights for the two
models as follows:

scene . show (' products / rvog/hv ' , vmin=0, vmax=50, s a v e f i l e= ' rvog hv .
png ')

scene . show (' products / s in cmode l t e s t /hv ' , vmin=0, vmax=50, s a v e f i l e=
' s i n c hv . png ')

If we’ve run a lot of model inversions with different names, it can be easy to
lose track of them. For keeping track of the current contents of the HDF5 file,
there is the Scene query method. If this method is called with no arguments,
it will print a listing of all HDF5 groups and datasets within the file. If the
name of a group or dataset is given as the argument to query, the attributes
of that group or dataset will be printed. If the method is called with an empty
string as an argument, the attributes of the main HDF5 file will be printed. In
this way, all of the structure and metadata in the Scene object can be easily
viewed. Here are some examples:

In [1 1] : scene . query ()
kapok . Scene . query | Pr in t ing groups and data s e t s in HDF5 f i l e . . .
kapok . Scene . query | cov
kapok . Scene . query | dem
kapok . Scene . query | i n c
kapok . Scene . query | kz
kapok . Scene . query | l a t
kapok . Scene . query | l on
kapok . Scene . query | pdopt
kapok . Scene . query | pdopt/coh
kapok . Scene . query | products
kapok . Scene . query | products / rvog
kapok . Scene . query | products / rvog/hv
kapok . Scene . query | products / rvog/ ext

In [1 2] : scene . query (' products / rvog/hv ')
kapok . Scene . index | Pr in t ing a t t r i b u t e s o f ' products / rvog/hv ' . . .
kapok . Scene . query | f i x e d : Fa l se
kapok . Scene . query | name : Forest Height
kapok . Scene . query | un i t s : m

CHAPTER 3. GETTING STARTED 17

In [1 3] : scene . query (' ')
kapok . Scene . index | Pr in t ing a t t r i b u t e s o f main HDF5 f i l e . . .
kapok . Scene . query | stack name : pongar 27500 01
kapok . Scene . query | s i t e : Pongara , Gabon
kapok . Scene . query | s l c a z imu th p i x e l s p a c i n g : 0 . 6
kapok . Scene . query | s l c s l a n t r a n g e p i x e l s p a c i n g : 1 .66551366
kapok . Scene . query | cov az imuth p ix e l spac ing : 12 .0
kapok . Scene . query | c o v s l a n t r a n g e p i x e l s p a c i n g : 8 .3275683
kapok . Scene . query | num tracks : 6
kapok . Scene . query | num base l ines : 15
. . .

There are more attributes in the main HDF5 file, but the output shown
here has been truncated for brevity.

Note that if we try to run inv using a value for the name argument which
already exists, an error message will be printed and the method will abort.
The software will avoid overwriting data unless we force it to. To do this, we
can set the overwrite keyword:

rvog = scene . inv (method= ' rvog ' , name= ' rvog ' , desc= 'RVoG, hv and
alpha f r e e parameters , f i x e d ex t i n c t i o n . ' , ove rwr i t e=True , ext
=0.04 , groundmag=0.95 , b l=0)

This time, instead of running the RVoG model using the default options,
we have chosen to fix the extinction parameter to a constant value of 0.04
Np/m (approximately 0.35 dB/m). We have also set the magnitude of the
ground coherence to 0.95 (default is 1.00). We have also performed single-
baseline inversion using the first baseline only, rather than multiple baselines.
Reference on the various parameter values and options can be found using
help(kapok.Scene.inv) and help(kapok.rvog.rvoginv). By setting the
overwrite keyword to True, the previous results stored under the ‘rvog’ group
will be overwritten by the new model inversion.

In this chapter, we have focused on the use of the object-oriented Kapok
interface. Note that all of the functions in the various Kapok modules can
be imported and used manually, if greater control over the processing is de-
sired. For example, let’s redo the previous RVoG inversion using the individual
functions at each processing step:

import kapok . topo
import kapok . rvog

b l = 0
ground , groundalt , vo l index = kapok . topo . groundso lver (scene . pdcoh [

b l] , kz=scene . kz (b l) , groundmag=0.95 , r e t u r n a l l=True)
coh high = np . where (vol index , scene . pdcoh [bl , 1] , scene . pdcoh [bl , 0])
hv , ext , converged = kapok . rvog . rvoginv (coh high , ground , scene .

inc , scene . kz (b l) , ext =0.04 , mu=0)

The groundsolver function finds the ground coherence. It also returns the
alternate (unchosen) ground coherence, and a boolean array called volindex

CHAPTER 3. GETTING STARTED 18

which tells us which of the two input coherences is farther from the ground
(closer to the volume coherence, e.g., the high coherence). We then use volindex
to create an array containing the high coherence image. We then run the
RVoG inversion using the rvoginv function, giving it the high coherence, the
ground coherence, the incidence angle, the kz values, a fixed extinction, a µ
value of zero (for the high coherence). The functions returns three arrays:
hv, containing the hv forest height values in meters; ext, containing the σx
extinction values in Np/m; and converged, a boolean array specifying for each
pixel whether the model was able to find a solution which closely fit the data
(ideally, every pixel in converged will be set to True).

In order to perform multi-baseline RVoG model inversion using the functions
manually, the kapok.rvog.rvogblselect() function would need to be used,
which will allow the multiple baselines to be combined, on a pixel-by-pixel
basis, using some specified baseline quality criteria. For more details, see that
function’s header.

So far, the model inversions have been performed for every pixel in the
PolInSAR data. In the case of water areas, the model will produce inaccurate
results. The low coherence magnitude of water areas is interpreted by the
models as volumetric decorrelation. The estimated forest heights for the water
areas will therefore tend to be very large. If we want to skip model inversion
for these water areas, we can provide the mask keyword to the inv method.
Mask should be a boolean array, with the same size as the scene. Where the
mask is True, the inversion will be performed. The inversion will skip over
pixels where mask is False, and the parameter values will be set to −1 for
these pixels. This is particularly helpful for the RVoG model, where reducing
the number of inverted pixels will also reduce the processing time.

Now we derive a mask from the HV backscattered power, excluding pixels
with HV backscatter values below -22 dB:

import numpy as np

mask = scene . power ('HV ') # Get the HV backsca t t e r ed power (in
l i n e a r un i t s) .

mask [mask <= 0] = 1e−10 # Get r i d o f void data (s e t to −100 dB) .
mask = (10 ∗np . log10 (mask)) > −22 # Values below −22 dB w i l l not be

inve r t ed .

Note that the power method returns the backscattered power (in linear
units) for the given polarization. Now we rerun the inversion using this mask:

rvog = scene . inv (method= ' rvog ' , name= ' rvog ' , desc= 'RVoG, hv and
alpha f r e e parameters , f i x e d ex t i n c t i o n . ' , ove rwr i t e=True , ext
=0.04 , groundmag=0.95 , mask=mask)

If we view these new results, we should see that the forest height values for
the low backscatter areas should be set to -1. Finally, we would like to geocode
our results. This is accomplished with the geo method:

scene . geo (' rvog/hv ' , ' rvog . grd ')

CHAPTER 3. GETTING STARTED 19

If we would like the masked out forest heights to be set to 0 instead of -1,
we can multiply by the mask when geocoding:

scene . geo (scene . get (' rvog/hv ') ∗mask , ' rvog . grd ')

The output resolution of the created raster file, in degrees, can be specified
using the tr keyword. The default value is 2.7777778e− 4 degrees, or about 30
meters near the equator.

Note that we can pass either a string (identifying the path to a HDF5
dataset in the file) or an array (containing the data to geocode) to the geo
method. The geo method can also be used to create geocoded output maps
for other inverted model parameters, or for the backscattered power, etc. When
run, the above example will save the RVoG forest heights to an ENVI file called
‘rvog.grd’, in WGS84 Geographic (latitude, longitude) projection. The forest
height map can then be opened in GIS software for further analysis.

Chapter 4

Data Organization

In this chapter, we will briefly discuss the internal data structure used to store
the data inside the HDF5 file. The following is a list of the HDF5 datasets in
the file after the initial data import process and the coherence optimization is
performed:

• ‘cov’ (Covariance Matrix): [azimuth, range, row, column] (8-byte com-
plex)

• ‘kz’ (kz): [baseline, azimuth, range] (4-byte float)

• ‘dem’ (DEM): [azimuth, range] (4-byte float)

• ‘inc’ (Incidence Angle): [azimuth, range] (4-byte float)

• ‘pdopt/coh’ (Phase Diversity Optimized Coherences): [baseline, 2, az-
imuth, range] (8-byte complex)

The square brackets denote the dimensions of the datasets along each axis.
The data types of each dataset are given in the parentheses.

The covariance matrix can be accessed directly through Scene.f[‘cov’], but
can also be accessed through Scene.cov. There are similar shortcuts available
for the other datasets in the list above. The optimized coherence dataset can be
accessed using Scene.pdcoh. The text in square brackets are the dimensions
of each of the datasets. Note that for 2D datasets, the azimuth index is the first
dimension, and the range index is the second dimension. The covariance matrix
has two additional dimensions, the row and column indices of the covariance
matrix for each pixel. Note that in order to save disk space, any covariance
matrix elements below the main diagonal of the matrix will be set to zero. Only
elements above the main diagonal should be used. The Scene object methods
automatically fill in the zero-valued elements with the appropriate values when
necessary. If we wish to work with the covariance matrix directly, and require
all the elements to be filled in with their actual values, we can calculate the
zero-valued elements using the kapok.lib.makehermitian function.

20

CHAPTER 4. DATA ORGANIZATION 21

For multi-baseline data, both the kz and optimized coherences will have
a baseline dimension. Baseline indices start at zero (for the first baseline),
and increase from there. Baselines are numbered such that adding additional
tracks will not change the numbering of existing baselines. See eqn. (3.1), or
the header of the kapok/lib/mb.py file, containing functions which handle
the baseline indexing, for more details on the baseline indexing. Note that
for single-baseline data, kz will have dimensions of [azimuth, range], while the
phase diversity coherences will have dimensions of [2, azimuth, range]. The
singleton dimensions are removed in the single-baseline case.

The 2 length dimension of the optimized coherences represents the two
coherences calculated by the algorithm. The Scene opt method will attempt
to sort the coherences such that the coherences located at [0] represent the high
coherence, and the coherences in [1] represent the low coherence, assuming no
phase wrapping has occurred. But this may not always be correct depending
on the desired ground solver parameters and the baseline length [5, 8].

As discussed in the previous section, model inversion results are always
stored in a ‘products/’ group within the HDF5 file, separated from the other
datasets. Each inversion will be a subgroup within ‘product’, e.g., ‘products/r-
vog’ or ‘products/sinc’, etc. Within these subgroups, there will be one dataset
for each solved parameter, e.g., ‘products/rvog/hv’ or ‘products/rvog/ext’ or
‘products/sinc/hv’, etc. All of the parameters are stored as 2D datasets with
the same [azimuth, range] dimensions as the rest of the data.

Chapter 5

Module Reference

What follows is a list of the Kapok modules, as well as a brief description
of each of their functions. For more details on a particular function, the
function headers can be viewed using Python’s built-in help system, using
help(kapok.module.function).

5.1 kapok (Core Functionality)

This module contains the Scene class definition, which has the following meth-
ods:

• get — Get a requested HDF5 dataset.

• query — Get a list of groups and datasets in the HDF5 file, and read the
attribute values.

• inv — Model inversion and parameter estimation.

• opt — Coherence optimization.

• show — Display images.

• power — Return the backscattered power for a given polarization.

• coh — Return the complex coherence for a given polarization.

• region — Coherence region plotting.

• geo — Output geocoded data for further analysis.

• ingest — Load external ENVI raster data (in WGS84 geographic coor-
dinates), reproject them into the UAVSAR radar coordinates, and then
save them into the Kapok Scene HDF5 file.

• subset — Create a subset of the Kapok Scene HDF5 file. The data can
be subset by azimuth bounds, range bounds, or flight tracks.

Help for the entirety of the Scene object can be accessed using help(kapok.Scene).

22

CHAPTER 5. MODULE REFERENCE 23

5.2 uavsar (UAVSAR Data Import)

This module handles the loading of UAVSAR data, and has the following func-
tions:

• load — Load in the specified UAVSAR data stack, and import/calculate
the covariance matrix, incidence angle, kz, and other data.

• Ann — This is a simple class which allows loading and querying of
UAVSAR annotation files.

• quicklook — Create a quicklook UAVSAR backscatter image.

5.3 vis (Data Visualization)

This module handles display of images for a variety of image types, and has
the following functions:

• show linear — Display linear data.

• show power — Convert power data to dB and display.

• show complex — Show the magnitude and phase of complex data using
the HSV colormap.

• show paulirgb — Show a Pauli basis RGB color composite image.

5.4 cohopt (Coherence Optimization)

This module handles coherence optimization, and has the following functions:

• pdopt — Perform phase diversity coherence optimization over an entire
PolInSAR image.

• pdopt pixel — Perform phase diversity coherence optimization for a single
pixel. This function is called when plotting coherence regions.

5.5 region (Coherence Region Plotting)

This module plots coherence regions, and creates the interactive coherence
region to test the model parameters. It has the following functions:

• cohregion — Plot the coherence region for a chosen pixel.

• rvogregion — Plot an interactive coherence region with sliders for the
RVoG model parameters.

CHAPTER 5. MODULE REFERENCE 24

5.6 topo (Topography Estimation)

This module handles estimation of the topographic InSAR phase, and has the
following functions:

• groundsolver — Estimate the ground coherence from two optimized co-
herence observations.

• linefit — Calculates the two possible ground coherence intersections be-
tween the line and a circle with radius equal to the ground coherence
magnitude.

5.7 sinc (Sinc Forest Model)

This module contains the sinc coherence forest model, and the sinc and phase
difference models, basic methods for forest height estimation [7]. It has the
following functions:

• sincinv — Calculate forest height using the sinc coherence model.

• sincfwd — Sinc coherence forward model.

• sincphaseinv — Calculate forest height using the sinc and phase difference
model.

5.8 rvog (Random Volume over Ground Forest Model)

This module handles inversion of the random volume over ground forest model
[1], and has the following functions:

• rvogfwdvol — Calculate the RVoG forward model volume coherence.

• rvoginv — Invert the RVoG model, estimating the forest height and either
the extinction parameter or the temporal decorrelation, depending on the
input options.

• rvogblselect — For multi-baseline inversion, selected between baselines
for each pixel using a number of baseline quality criteria.

5.9 geo (Geocoding)

This module handles geocoding of output data products, and has the function:

• radar2ll pr — Resample an array in radar (azimuth, slant range) coordi-
nates to Geographic coordinates using the pyresample Python library.

• radar2ll gdal — Resample an array in radar (azimuth, slant range) coor-
dinates to Geographic coordinates using gdalwarp.

CHAPTER 5. MODULE REFERENCE 25

• ll2radar — Convert an array in Geographic (lat,lon) coordinates into a
corresponding array in the (azimuth, slant range) coordinates of the radar
imagery, using bilinear interpolation.

Bibliography

[1] S. Cloude and K. Papathanassiou, “Three-stage inversion process for po-
larimetric SAR interferometry,” Radar, Sonar and Navigation, IEE Pro-
ceedings -, vol. 150, no. 3, pp. 125–134, June 2003.

[2] ——, “Polarimetric SAR interferometry,” Geoscience and Remote Sensing,
IEEE Transactions on, vol. 36, no. 5, pp. 1551–1565, Sep 1998.

[3] T. Flynn, M. Tabb, and R. Carande, “Coherence region shape extraction
for vegetation parameter estimation in polarimetric SAR interferometry,”
in IEEE International Geoscience and Remote Sensing Symposium, vol. 5,
2002, pp. 2596–2598 vol.5.

[4] M. Tabb, J. Orrey, T. Flynn, and R. Carande, “Phase diversity: A de-
composition for vegetation parameter estimation using polarimetric SAR
interferometry,” in Proceedings of EUSAR 2002, 2002, pp. 721–724.

[5] M. Lavalle and S. Hensley, “Extraction of Structural and Dynamic
Properties of Forests From Polarimetric-Interferometric SAR Data Affected
by Temporal Decorrelation,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 53, no. 9, pp. 4752–4767, 2015. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7084639

[6] M. Neumann, L. Ferro-Famil, and A. Reigber, “Estimation of Forest Struc-
ture, Ground, and Canopy Layer Characteristics From Multibaseline Polari-
metric Interferometric SAR Data,” Geoscience and Remote Sensing, IEEE
Transactions on, vol. 48, no. 3, pp. 1086–1104, March 2010.

[7] S. R. Cloude, “Polarization coherence tomography,” Radio Science, vol. 41,
no. 4, 2006. [Online]. Available: http://dx.doi.org/10.1029/2005RS003436

[8] F. Kugler, S.-K. Lee, I. Hajnsek, and K. P. Papathanassiou, “Forest Height
Estimation by Means of Pol-InSAR Data Inversion: The Role of the Verti-
cal Wavenumber,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 53, no. 10, pp. 5294–5311, 2015.

26

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7084639
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7084639
http://dx.doi.org/10.1029/2005RS003436

	Introduction
	Installation and Setup
	Getting Started
	Data Organization
	Module Reference
	kapok (Core Functionality)
	uavsar (UAVSAR Data Import)
	vis (Data Visualization)
	cohopt (Coherence Optimization)
	region (Coherence Region Plotting)
	topo (Topography Estimation)
	sinc (Sinc Forest Model)
	rvog (Random Volume over Ground Forest Model)
	geo (Geocoding)

	Bibliography

