
MQ2 Documentation
Release 1.1.0

Pierre-Yves Chibon

July 01, 2013

CONTENTS

1 Documentation: 3
1.1 Install . 3
1.2 Prepare your data . 4
1.3 Usage . 5
1.4 Output . 6
1.5 Contributing . 7
1.6 Extend MQ², write your own plugin . 8

Index 11

i

ii

MQ2 Documentation, Release 1.1.0

A simple python module to process output from QTL mapping tool including MapQTL and R/qtl.

Assuming one QTL per linkage group and using the LOD threshold set by the user. This application extracts all the
QTLs detected by the QTL mapping tool, it finds the closest marker and finally put the number of QTLs found for
each marker on the genetic map.

This approach quickly allows you to find potential QTL hotspot in your dataset. This is particularly usefull for large
QTL analysis on a large number of traits.

MQ² is licensed under the GPL v3 or any later version

CONTENTS 1

http://www.kyazma.nl/index.php/mc.MapQTL
http://www.rqtl.org/
http://www.gnu.org/licenses/gpl.txt

MQ2 Documentation, Release 1.1.0

2 CONTENTS

CHAPTER

ONE

DOCUMENTATION:

1.1 Install

1.1.1 Dependencies

MQ² requires python 2 (version 2.6 and above) and is compatible with Python 3.

In addition to python MQ² has the following dependencies:

• straight.plugin

• xlrd (only required by the Excel plugin, if not present only this plugin will be affected)

1.1.2 Install methods

Install release

MQ² releases are uploaded on pypi and you can find them on the pypi MQ2 page.

Having MQ² on pypi allows easy_install. You can therefore install the latest MQ² release by running:

easy_install MQ2

Note: This is the recommanded method for users running Windows.

Install from sources

On the pypi MQ² page you can also download the latest version of the MQ². Once downloaded, you can extract its
content and install it via the setup.py.

The steps are then:

• Download the latest release from MQ2 pypi page

• Extract the files somewhere on your system

• Install MQ² using the command:

python setup.py install

3

http://www.python.org/download/
https://pypi.python.org/pypi/straight.plugin/
https://pypi.python.org/pypi/xlrd
http://pypi.python.org/pypi/
http://pypi.python.org/pypi/MQ2/
http://pypi.python.org/pypi/MQ2/
http://pypi.python.org/pypi/MQ2/

MQ2 Documentation, Release 1.1.0

Install from git

To install the development version, you need to have git installed on your system.

Retrieve the sources from the git using the command:

git clone https://github.com/PBR/MQ2.git

Then you can either

• run MQ² from the cloned repository using:

python MQ2/mq2.py --help

• install MQ² on your system via the command

python setup.py install

1.2 Prepare your data

In order to run correctly MQ², you may have to prepare a little bit you data.

1.2.1 Running from MapQTL output

For each project, MapQTL generates a .mqp file containing information about the project. Within the same folder,
MapQTL generates a folder that contains all QTL mapping results. The results folder has the same name as the project
and ends with the extension: .mpd.

To prepare the QTL mapping data for MQ: - locate the .mpd folder - create a zip archive of this folder

Only the files with the extension .mqo are required, however, the presence of other files does not affect the results.

1.2.2 Running from R/qtl output

MQ² can be used on data generated using R/qtl. This data has to be provided in a CSV file or an Excel document.

Example R code to generate a MQ² compatible output file from R/qtl

library(qtl)
data(fake.bc)

Perform the QTL mapping analysis
fake.bc <- calc.genoprob(fake.bc, step=2.5)
qtl_out <- scanone(fake.bc, pheno.col=c(1:length(fake.bc$pheno)))

write.csv(qtl_out, file=’rqtl_out.csv’)

See Running from other QTL mapping tools for more explanations about the format.

1.2.3 Running from other QTL mapping tools

MQ² can be run on data from any QTL mapping tool according the data can be transformed to a Comma Separated
Value (CSV) file (using commas , as delimiter) or in an Excel document.

The format of the input is very important for MQ² to work. The CSV or Excel sheet should be formatted as follow:

4 Chapter 1. Documentation:

http://git-scm.com/downloads
http://www.kyazma.nl/index.php/mc.MapQTL
http://www.rqtl.org/

MQ2 Documentation, Release 1.1.0

• 1st column contains the markers

• 2nd column contains the linkage groups

• 3rd column contains the position of these markers

• 4th and following columns contain the trait data: the LOD value associated to each marker for this trait.

The first row of the document contains the headers (Markers, Linkage Group, position, Trait name1, Trait name2, etc).

The screenshot below presents how the data should be formated:

Figure 1.1: Structure the CSV file and Excel documents should have to be processed by MQ².

The CSV or Excel document should be compressed into a .zip archive to be uploaded on the web-interface.

Note: MQ² can only analyze one CSV file or one Excel document at a time, however, the Excel document may
contain multiple sheets.

1.3 Usage

The command line version of MQ² is ran via the MQ2 command.

1.3.1 Options

All the options can be listed via MQ2 --help or MQ2 -h.

These options are:

• -h / --help, this will simply present you the list of all the options available and what they represent, a little
bit like the present document but shorter.

1.3. Usage 5

MQ2 Documentation, Release 1.1.0

• -z / --zipfile, this is one of the two options to specify to MQ² your input files. With this option you are
providing to MQ² a zip archive containing the files generated by your QTL mapping tool.

• -d / --dir, this is the second option to specify to MQ² your input files. With this option, you are pointing MQ²
to a directory containing your input files.

• -f / --file, this is the third option to specify to MQ² an input file. With this option, you are pointing MQ² to
a single input file.

• --lod, this is the option to specify which LOD value from which a QTL is considered to be significant. You
can run a permutation test in MapQTL to determine the optimal LOD threshold to use.

• --session, this is the option that allows you to specify which MapQTL session or which sheet of an Excel
document to analyse in your project. Within one MapQTL project, one can analyse the same data with different
approaches or different parameters creating a different session each time. Within a single Excel document,
one may have several sheets each containing the results of different analysis (methods, parameters, data). The
session number you provide to this option is the session or name of the sheet that you would like to analyse.

• --verbose, this option is mostly of interest to have a more verbose output when running MQ².

• --debug, this option is mostly of interest if you are facing a problem with MQ². Turn in the option and send
us the output in order to improve MQ².

1.3.2 Example commands

A basic command of MQ² will look like:

MQ2 --folder /path/to/folder --lod <lod_threshold> --session <mapqtl_session>
MQ2 --zipfile /path/to/folder/archive.zip --lod <lod_threshold> --session <ExcelSheetName>
MQ2 --file /path/to/folder/output.csv --lod <lod_threshold>

For example:

MQ2 --folder c:\Documents\mapqtl\AnalysesB\ --lod 3.2 --session 3
MQ2 --zipfile c:\Documents\rqtl\Excel\excel_output.zip --lod 3.2 --session="Sheet2"
MQ2 --file c:\Documents\rqtl\csv\rqtl_out.csv --lod 3.2

Note: MQ2 will generate its output in the current working directory. Be aware of this when you run it several time
on different dataset or with different parameters.

1.4 Output

MQ², command line or via its web interface, will generate a number of output files for each steps of the procedure,
allowing to follow how the final results have been generated.

1.4.1 qtls.csv

The qtls.csv file list all the QTLs found while parsing the MapQTL output files. MQ² only extracts the strongest
QTL above the LOD threshold per linkage group for each trait. Each row of this file corresponds to the peak of one of
the QTL found.

When running a MapQTL, one can ask MapQTL to impute putative markers in between the markers given in the
genetic map. As a results, in the Locus column of the qtls.csv file, some rows might have no values. This means
that there are no marker from the genetic map at this position.

6 Chapter 1. Documentation:

https://github.com/PBR/MQ2_Web

MQ2 Documentation, Release 1.1.0

All columns in the qtls.csv file are directly coming from the MapQTL output. They correspond to the values that
are displayed in the Result tab within MapQTL.

1.4.2 qtls_with_mk.csv

The qtls_with_mk.csv correspond to the same file as the qtls.csv with the addition of an extra column Closest
marker which correspond to the name of the marker closest to the position of this QTL peak.

1.4.3 map.csv

The map.csv file corresponds to the genetic map provided by the user for the MapQTL analysis and that MQ²
retrieves from the MapQTL output.

1.4.4 map_with_qtl.csv

The map_with_qtl.csv file corresponds to the same file as the map.csv with the addition of an extra column #
QTLs corresponding to the number of QTLs found at this specific marker.

The number of QTLs is compiled from the qtls_with_mk.csv file using the added column Closest marker.

1.4.5 qtls_matrix.csv

The qtls_matrix.csv file is a matrix providing for each trait analysed and for each marker on the genetic map
the LOD value found by MapQTL.

An extra column # QTLs is added at the end of the file providing the number traits having a LOD value above the LOD
threshold for that specific marker.

This matrix gives the possibility to have an overview of the QTL interval for each trait.

1.4.6 MapChart.map

New in version 0.2. MapChart is a window-specific (freely available) program to visualize QTLs on a genetic map.

MQ² provides a MapChart.map output file which can be loaded directly into MapChart and will allow a more detail
visualisation of the QTL intervals on the genetic map.

More information about MapChart can also be found in:

Voorrips, R.E., 2002. MapChart: Software for the graphical presentation of
linkage maps and QTLs. The Journal of Heredity 93 (1): 77-78.

1.5 Contributing

MQ² is licensed under the GPLv3 or any later version. This means that you are free to use the tool, observe how it
works, change it and redistribute it.

We also welcome patches and request for enhancement.

If you’re submitting patches to MQ², please observe the following:

• Check that your python code is PEP8-compliant. There is a pep8 tool that can automatically check your source.

1.5. Contributing 7

http://wageningenur.nl/en/show/Mapchart.htm
http://www.python.org/dev/peps/pep-0008/
http://pypi.python.org/pypi/pep8

MQ2 Documentation, Release 1.1.0

• Check your code quality usint pylint.

• Check that your code doesn’t break the test suite. The test suite can be run using nosetest.

• If you are adding new code, please write tests for them in test/,

• If your change warrants a modification to the docs in doc/ or any docstrings in MQ2/ please make that modi-
fication.

Note: You have a doubt, you don’t know how to do something, you have an idea but don’t know how to implement
it, you just have something bugging you?

Contact us by email or just open a ticket on github.

1.6 Extend MQ², write your own plugin

If you the QTL mapping tool you use is not currently supported by MQ², it might be easily added by adding a plugin
specific to this format/tool.

To create a new plugin, you will need to create a new python file, place it under MQ2/plugins/. This python file
should contain its own class which inherits and implements the method defined in PluginInterface.

1.6.1 Plugin interface:

class MQ2.plugin_interface.PluginInterface
The interface that each plugin should extends to support their file format and tool.

Each plugin should be able to detect if it can be run or not automatically. In case the plugin cannot be used, it
should not prevent the other plugins from running.

Each plugin should be able to detect in a folder (which may contain subfolders) if there are files they are
compatible with.

For some plugin, multiple analyzes can be submitted at once and the plugin needs to know which one should be
analyzed. This will be the role of the session argument.

classmethod convert_inputfiles(folder=None, inputfile=None, session=None,
lod_threshold=None, qtls_file=’qtls.csv’, ma-
trix_file=’qtls_matrix.csv’, map_file=’map.csv’)

Convert the input files present in the given folder or inputfile. This method creates the matrix representation
of the QTLs results providing for each marker position the LOD value found for each trait as well as a
list of all the significant QTLs found in the results and a representation of the genetic map used in the
experiment. The genetic map should be cleared of any markers added by the QTL mapping software.

Parameters

• folder – string of the path to the folder containing the files to check. This folder may
contain sub-folders.

• inputfile – string of the path to the input file to use

• session – the session identifier used to identify which session to process

• lod_threshold – the LOD threshold to apply to determine if a QTL is significant or not

• qtls_file – a csv file containing the list of all the significant QTLs found in the anal-
ysis. The matrix is of type: trait, linkage group, position, Marker,
LOD other columns

8 Chapter 1. Documentation:

http://pypi.python.org/pypi/pylint
http://github.com/PBR/MQ2

MQ2 Documentation, Release 1.1.0

• matrix_file – a csv file containing a matrix representation of the QTL data. This matrix
is of type: marker, linkage group, position, trait1 lod, trait2,
lod

• map_file – a csv file containing the genetic map used in this experiment. The map is of
structure: marker, linkage group, position

classmethod get_files(folder)
Retrieve the list of files the plugin can work on. Find this list based on the files name, files extension or
even actually by reading in the file.

The method get_files will browse the provided path for any file in the specified folder or sub-folder
that the plugin can handle.

Note: get_files should be able to handle the case where the provided path points to a file rather than
a folder, in which case the plugin should return an empty list.

Parameters folder – string of the path to the folder containing the files to check. This folder
may contain sub-folders.

classmethod get_session_identifiers(folder=None, inputfile=None)
Retrieve the list of session identifiers contained in the data on the folder or the inputfile.

The method get_session_identifiers is used by the web-interface to present to the user a list of
sessions they can choose from and by the command line interface, when the user did not specified a session
or specified an invalid session.

The get_session_identifiers method receive either a folder or an inputfile argument (and should
raise and MQ2Exception if both are provided). The method extract the session identifiers from this
input and return them as a list. If both folder and inputfile are None, it may return an empty list.

Parameters

• folder – string of the path to the folder containing the files to check. This folder may
contain sub-folders.

• inputfile – string of the path to the input file to use

classmethod is_applicable()
Functions used to check whether the plugin can be used or not. This is the function that would check the
import and that should make sure the rest of the plugin will run smoothly.

The method is_applicable will be called by the program and should return a simple boolean telling
if the plugin can be run or not. It is this method that should check that all the potential dependencies are
met for the plugin to run.

classmethod valid_file(filename)
Check if the provided file is a valid file for this plugin.

Since MQ² can also be used on a single file via the command-line, the valid_file will then be used to
check if the provided file can be handled by the plugin.

Note: valid_file should be able to handle the case where the provided path points to a director rather
than a file, in which case the plugin should return a False boolean.

Parameters filename – string of the path to the file to check.

1.6. Extend MQ², write your own plugin 9

MQ2 Documentation, Release 1.1.0

10 Chapter 1. Documentation:

INDEX

C
convert_inputfiles() (MQ2.plugin_interface.PluginInterface

class method), 8

G
get_files() (MQ2.plugin_interface.PluginInterface class

method), 9
get_session_identifiers() (MQ2.plugin_interface.PluginInterface

class method), 9

I
is_applicable() (MQ2.plugin_interface.PluginInterface

class method), 9

P
PluginInterface (class in MQ2.plugin_interface), 8

V
valid_file() (MQ2.plugin_interface.PluginInterface class

method), 9

11

	Documentation:
	Install
	Prepare your data
	Usage
	Output
	Contributing
	Extend MQ², write your own plugin

	Index

