Actual source code: test2.c
slepc-3.16.1 2021-11-17
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-2021, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
10: /*
11: Example based on spring problem in NLEVP collection [1]. See the parameters
12: meaning at Example 2 in [2].
14: [1] T. Betcke, N. J. Higham, V. Mehrmann, C. Schroder, and F. Tisseur,
15: NLEVP: A Collection of Nonlinear Eigenvalue Problems, MIMS EPrint
16: 2010.98, November 2010.
17: [2] F. Tisseur, Backward error and condition of polynomial eigenvalue
18: problems, Linear Algebra and its Applications, 309 (2000), pp. 339--361,
19: April 2000.
20: */
22: static char help[] = "Test the solution of a PEP from a finite element model of "
23: "damped mass-spring system (problem from NLEVP collection).\n\n"
24: "The command line options are:\n"
25: " -n <n> ... number of grid subdivisions.\n"
26: " -mu <value> ... mass (default 1).\n"
27: " -tau <value> ... damping constant of the dampers (default 10).\n"
28: " -kappa <value> ... damping constant of the springs (default 5).\n"
29: " -initv ... set an initial vector.\n\n";
31: #include <slepcpep.h>
33: /*
34: Check if computed eigenvectors have unit norm
35: */
36: PetscErrorCode CheckNormalizedVectors(PEP pep)
37: {
39: PetscInt i,nconv;
40: Mat A;
41: Vec xr,xi;
42: PetscReal error=0.0,normr;
43: #if !defined(PETSC_USE_COMPLEX)
44: PetscReal normi;
45: #endif
48: PEPGetConverged(pep,&nconv);
49: if (nconv>0) {
50: PEPGetOperators(pep,0,&A);
51: MatCreateVecs(A,&xr,&xi);
52: for (i=0;i<nconv;i++) {
53: PEPGetEigenpair(pep,i,NULL,NULL,xr,xi);
54: #if defined(PETSC_USE_COMPLEX)
55: VecNorm(xr,NORM_2,&normr);
56: error = PetscMax(error,PetscAbsReal(normr-PetscRealConstant(1.0)));
57: #else
58: VecNormBegin(xr,NORM_2,&normr);
59: VecNormBegin(xi,NORM_2,&normi);
60: VecNormEnd(xr,NORM_2,&normr);
61: VecNormEnd(xi,NORM_2,&normi);
62: error = PetscMax(error,PetscAbsReal(SlepcAbsEigenvalue(normr,normi)-PetscRealConstant(1.0)));
63: #endif
64: }
65: VecDestroy(&xr);
66: VecDestroy(&xi);
67: if (error>100*PETSC_MACHINE_EPSILON) {
68: PetscPrintf(PETSC_COMM_WORLD,"Vectors are not normalized. Error=%g\n",(double)error);
69: }
70: }
71: return(0);
72: }
74: int main(int argc,char **argv)
75: {
76: Mat M,C,K,A[3]; /* problem matrices */
77: PEP pep; /* polynomial eigenproblem solver context */
79: PetscInt n=30,Istart,Iend,i,nev;
80: PetscReal mu=1.0,tau=10.0,kappa=5.0;
81: PetscBool initv=PETSC_FALSE,skipnorm=PETSC_FALSE;
82: Vec IV[2];
84: SlepcInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr;
86: PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL);
87: PetscOptionsGetReal(NULL,NULL,"-mu",&mu,NULL);
88: PetscOptionsGetReal(NULL,NULL,"-tau",&tau,NULL);
89: PetscOptionsGetReal(NULL,NULL,"-kappa",&kappa,NULL);
90: PetscOptionsGetBool(NULL,NULL,"-initv",&initv,NULL);
91: PetscOptionsGetBool(NULL,NULL,"-skipnorm",&skipnorm,NULL);
93: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
94: Compute the matrices that define the eigensystem, (k^2*M+k*C+K)x=0
95: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
97: /* K is a tridiagonal */
98: MatCreate(PETSC_COMM_WORLD,&K);
99: MatSetSizes(K,PETSC_DECIDE,PETSC_DECIDE,n,n);
100: MatSetFromOptions(K);
101: MatSetUp(K);
103: MatGetOwnershipRange(K,&Istart,&Iend);
104: for (i=Istart;i<Iend;i++) {
105: if (i>0) {
106: MatSetValue(K,i,i-1,-kappa,INSERT_VALUES);
107: }
108: MatSetValue(K,i,i,kappa*3.0,INSERT_VALUES);
109: if (i<n-1) {
110: MatSetValue(K,i,i+1,-kappa,INSERT_VALUES);
111: }
112: }
114: MatAssemblyBegin(K,MAT_FINAL_ASSEMBLY);
115: MatAssemblyEnd(K,MAT_FINAL_ASSEMBLY);
117: /* C is a tridiagonal */
118: MatCreate(PETSC_COMM_WORLD,&C);
119: MatSetSizes(C,PETSC_DECIDE,PETSC_DECIDE,n,n);
120: MatSetFromOptions(C);
121: MatSetUp(C);
123: MatGetOwnershipRange(C,&Istart,&Iend);
124: for (i=Istart;i<Iend;i++) {
125: if (i>0) {
126: MatSetValue(C,i,i-1,-tau,INSERT_VALUES);
127: }
128: MatSetValue(C,i,i,tau*3.0,INSERT_VALUES);
129: if (i<n-1) {
130: MatSetValue(C,i,i+1,-tau,INSERT_VALUES);
131: }
132: }
134: MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY);
135: MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY);
137: /* M is a diagonal matrix */
138: MatCreate(PETSC_COMM_WORLD,&M);
139: MatSetSizes(M,PETSC_DECIDE,PETSC_DECIDE,n,n);
140: MatSetFromOptions(M);
141: MatSetUp(M);
142: MatGetOwnershipRange(M,&Istart,&Iend);
143: for (i=Istart;i<Iend;i++) {
144: MatSetValue(M,i,i,mu,INSERT_VALUES);
145: }
146: MatAssemblyBegin(M,MAT_FINAL_ASSEMBLY);
147: MatAssemblyEnd(M,MAT_FINAL_ASSEMBLY);
149: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
150: Create the eigensolver and set various options
151: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
153: PEPCreate(PETSC_COMM_WORLD,&pep);
154: A[0] = K; A[1] = C; A[2] = M;
155: PEPSetOperators(pep,3,A);
156: PEPSetProblemType(pep,PEP_GENERAL);
157: PEPSetTolerances(pep,PETSC_SMALL,PETSC_DEFAULT);
158: if (initv) { /* initial vector */
159: MatCreateVecs(K,&IV[0],NULL);
160: VecSetValue(IV[0],0,-1.0,INSERT_VALUES);
161: VecSetValue(IV[0],1,0.5,INSERT_VALUES);
162: VecAssemblyBegin(IV[0]);
163: VecAssemblyEnd(IV[0]);
164: MatCreateVecs(K,&IV[1],NULL);
165: VecSetValue(IV[1],0,4.0,INSERT_VALUES);
166: VecSetValue(IV[1],2,1.5,INSERT_VALUES);
167: VecAssemblyBegin(IV[1]);
168: VecAssemblyEnd(IV[1]);
169: PEPSetInitialSpace(pep,2,IV);
170: VecDestroy(&IV[0]);
171: VecDestroy(&IV[1]);
172: }
173: PEPSetFromOptions(pep);
175: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
176: Solve the eigensystem
177: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
179: PEPSolve(pep);
180: PEPGetDimensions(pep,&nev,NULL,NULL);
181: PetscPrintf(PETSC_COMM_WORLD," Number of requested eigenvalues: %D\n",nev);
183: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
184: Display solution and clean up
185: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
187: PEPErrorView(pep,PEP_ERROR_BACKWARD,NULL);
188: if (!skipnorm) { CheckNormalizedVectors(pep); }
189: PEPDestroy(&pep);
190: MatDestroy(&M);
191: MatDestroy(&C);
192: MatDestroy(&K);
193: SlepcFinalize();
194: return ierr;
195: }
197: /*TEST
199: testset:
200: args: -pep_nev 4 -initv
201: requires: !single
202: output_file: output/test2_1.out
203: test:
204: suffix: 1
205: args: -pep_type {{toar linear}}
206: test:
207: suffix: 1_toar_mgs
208: args: -pep_type toar -bv_orthog_type mgs
209: test:
210: suffix: 1_qarnoldi
211: args: -pep_type qarnoldi -bv_orthog_refine never
212: test:
213: suffix: 1_linear_gd
214: args: -pep_type linear -pep_linear_eps_type gd -pep_linear_explicitmatrix
216: testset:
217: args: -pep_target -0.43 -pep_nev 4 -pep_ncv 20 -st_type sinvert
218: output_file: output/test2_2.out
219: test:
220: suffix: 2
221: args: -pep_type {{toar linear}}
222: test:
223: suffix: 2_toar_scaleboth
224: args: -pep_type toar -pep_scale both
225: test:
226: suffix: 2_toar_transform
227: args: -pep_type toar -st_transform
228: test:
229: suffix: 2_qarnoldi
230: args: -pep_type qarnoldi -bv_orthog_refine always
231: test:
232: suffix: 2_linear_explicit
233: args: -pep_type linear -pep_linear_explicitmatrix -pep_linear_linearization 0,1
234: test:
235: suffix: 2_linear_explicit_her
236: args: -pep_type linear -pep_linear_explicitmatrix -pep_hermitian -pep_linear_linearization 0,1
237: test:
238: suffix: 2_stoar
239: args: -pep_type stoar -pep_hermitian
240: test:
241: suffix: 2_jd
242: args: -pep_type jd -st_type precond -pep_max_it 200 -pep_ncv 24
243: requires: !single
245: test:
246: suffix: 3
247: args: -pep_nev 12 -pep_extract {{none norm residual structured}} -pep_monitor_cancel
248: requires: !single
250: testset:
251: args: -st_type sinvert -pep_target -0.43 -pep_nev 4
252: output_file: output/test2_2.out
253: test:
254: suffix: 4_schur
255: args: -pep_refine simple -pep_refine_scheme schur
256: test:
257: suffix: 4_mbe
258: args: -pep_refine simple -pep_refine_scheme mbe -pep_refine_ksp_type preonly -pep_refine_pc_type lu
259: test:
260: suffix: 4_explicit
261: args: -pep_refine simple -pep_refine_scheme explicit
262: test:
263: suffix: 4_multiple_schur
264: args: -pep_refine multiple -pep_refine_scheme schur
265: requires: !single
266: test:
267: suffix: 4_multiple_mbe
268: args: -pep_refine multiple -pep_refine_scheme mbe -pep_refine_ksp_type preonly -pep_refine_pc_type lu -pep_refine_pc_factor_shift_type nonzero
269: test:
270: suffix: 4_multiple_explicit
271: args: -pep_refine multiple -pep_refine_scheme explicit
272: requires: !single
274: test:
275: suffix: 5
276: nsize: 2
277: args: -pep_type linear -pep_linear_explicitmatrix -pep_general -pep_target -0.43 -pep_nev 4 -pep_ncv 20 -st_type sinvert -pep_linear_st_ksp_type bcgs -pep_linear_st_pc_type bjacobi
278: output_file: output/test2_2.out
280: test:
281: suffix: 6
282: args: -pep_type linear -pep_nev 12 -pep_extract {{none norm residual}}
283: requires: !single
284: output_file: output/test2_3.out
286: test:
287: suffix: 7
288: args: -pep_nev 12 -pep_extract {{none norm residual structured}} -pep_refine multiple
289: requires: !single
290: output_file: output/test2_3.out
292: testset:
293: args: -st_type sinvert -pep_target -0.43 -pep_nev 4 -st_transform
294: output_file: output/test2_2.out
295: test:
296: suffix: 8_schur
297: args: -pep_refine simple -pep_refine_scheme schur
298: test:
299: suffix: 8_mbe
300: args: -pep_refine simple -pep_refine_scheme mbe -pep_refine_ksp_type preonly -pep_refine_pc_type lu
301: test:
302: suffix: 8_explicit
303: args: -pep_refine simple -pep_refine_scheme explicit
304: test:
305: suffix: 8_multiple_schur
306: args: -pep_refine multiple -pep_refine_scheme schur
307: test:
308: suffix: 8_multiple_mbe
309: args: -pep_refine multiple -pep_refine_scheme mbe -pep_refine_ksp_type preonly -pep_refine_pc_type lu
310: test:
311: suffix: 8_multiple_explicit
312: args: -pep_refine multiple -pep_refine_scheme explicit
314: testset:
315: nsize: 2
316: args: -st_type sinvert -pep_target -0.49 -pep_nev 4 -pep_refine_partitions 2 -st_ksp_type bcgs -st_pc_type bjacobi -pep_scale diagonal -pep_scale_its 4
317: output_file: output/test2_2.out
318: test:
319: suffix: 9_mbe
320: args: -pep_refine simple -pep_refine_scheme mbe -pep_refine_ksp_type preonly -pep_refine_pc_type lu
321: test:
322: suffix: 9_explicit
323: args: -pep_refine simple -pep_refine_scheme explicit
324: test:
325: suffix: 9_multiple_mbe
326: args: -pep_refine multiple -pep_refine_scheme mbe -pep_refine_ksp_type preonly -pep_refine_pc_type lu
327: requires: !single
328: test:
329: suffix: 9_multiple_explicit
330: args: -pep_refine multiple -pep_refine_scheme explicit
331: requires: !single
333: test:
334: suffix: 10
335: nsize: 4
336: args: -st_type sinvert -pep_target -0.43 -pep_nev 4 -pep_refine simple -pep_refine_scheme explicit -pep_refine_partitions 2 -st_ksp_type bcgs -st_pc_type bjacobi -pep_scale diagonal -pep_scale_its 4
337: output_file: output/test2_2.out
339: testset:
340: args: -pep_nev 4 -initv -mat_type aijcusparse
341: output_file: output/test2_1.out
342: requires: cuda !single
343: test:
344: suffix: 11_cuda
345: args: -pep_type {{toar linear}}
346: test:
347: suffix: 11_cuda_qarnoldi
348: args: -pep_type qarnoldi -bv_orthog_refine never
349: test:
350: suffix: 11_cuda_linear_gd
351: args: -pep_type linear -pep_linear_eps_type gd -pep_linear_explicitmatrix
353: test:
354: suffix: 12
355: nsize: 2
356: args: -pep_type jd -ds_parallel synchronized -pep_target -0.43 -pep_nev 4 -pep_ncv 20
357: requires: !single
359: test:
360: suffix: 13
361: args: -pep_nev 12 -pep_view_values draw -pep_monitor draw::draw_lg
362: requires: x !single
363: output_file: output/test2_3.out
365: test:
366: suffix: 14
367: requires: complex !single
368: args: -pep_type ciss -rg_type ellipse -rg_ellipse_center -48.5 -rg_ellipse_radius 1.5 -pep_ciss_delta 1e-10
370: TEST*/