Jfam

Adjudicating Between Competing Annotations

Kaitlin Carey, Travis Wheeler, Dept. of Computer Science, University of Montana, Missoula, Montana, USA

UNIVERSITY OF

MONTANA

The Problem: Selecting From Competing Annotations

A common annotation process:

 Compare an un-annotated sequence (the Target) to
a large collection of known sequences (the Queries)

* Sometimes, more than one of the Queries shows a —
significant match to the Target

* Pick ‘true’ matching query based on highest
alignment score

* Falsely implies certainty of the true match

* When two or more sequences match with high
alignment scores, this method is no longer reliable,
because it is possible that either one is the true
sequence.

* Relevant in databases with highly similar sequences

Pfam Dfam _—

Reliability of Competing Annotations ———m
Annotations of biological replicates should

agree. Among transposable elements in %
humans, more than 10% of annotations [—Alus_— }
disagree. T A

Image source:

Confidence from Alignment Scores
Q :491,9>, 93, ..., 9n (Where g can be a sequence or pHMM)
Define P(q;|t) : probability that the true label of t is g;

Assuming alignments cover all possible explanations for t:

P(q;
Conf(ailt) = IE‘ECI'TO
J J

We don’t have P(qg;|t), but Bayes’ rule says:

P(q;
P@ilt) = P(tla) + oro

Assuming uniform distribution over P(q;), and with a fixed t,
P(q;|t) < P(t|q;). So,

P(t|q;)
% P(t|q;)

Conf(q;|t) =

Probabilities «— Scores

Given scoring matrix, alignment scores are (scaled) log odds ratios:

P(a,blhomolo
Score(a,b) = int </1 x log, (a, D] gy))

P(a)P(b)
A : scaling factor of scoring matrix

Over entire alignment:
P(t|q;) [model of homology]

2 P(t|R) [R=random model]

score(t,q;) = A +log

So:

score(t|q;)
P(tlq;) = P(t|R) + 2 /3

score(“qi)//1 This allows us to:

3 P(t|R) = 2 * “Ambiguate”
Conf(qilt) o score(t|qj)/ competing
2 P(t|R) * 2 A annotations (Shows
a more accurate
SC‘"‘e(WIi)/I1 depiction of
Conf(q;|t) = TR anno’Fatlon
/ certainty) or
2 g
J * Produce a set of

appropriate,

I VIR probabilistically

B Alusx abeled ,
S AlUSG abeled annotations
B AluSz .

Assumptions:
* Consistent background
frequencies

Alignment Confidence) .

Score Score * Consistent alighnment
37 I 56 I boundaries
30 MmN 01 e
3 NN 33 I I R

]
Genome 8

Confidence can also be used to:

recombination

AluSx

AluY

Target sequence

\

breakpoint

dfam.org
————— I
/ \ L1PA3
Alulo
] | B |
- ',{?: Target sequence

\

breakpoint

3. Identify inserted elements

1. Identity instances of gene conversion / homologous sequences can also insert themselves B C

inside of other sequences.
B and C have both inserted
themselves inside of A
* Traditional annotation methods
would find 3 occurrences of A
sequence A
 We want to find the 3 occurrences 1
of A and recognize them as all
belonging to the same original 1

sequence A B A C A

2. Detect boundaries of neighboring partial element matches

Jumping Profile Hidden Markov
Model (ideal)

One approach for identifying breakpoints:

e Sub-model HMM for each subfamily in the alignment

* Allows transitions (jumps) between submodels

* Combinatoric explosion of transitions unless the number of
possible jumps is constrained

Subfamily A My > M, >M > .. =M,
/ \

Subfamily B e M, M,,

Subfamily K

Image source: Schultz, AK et all, BMC Bioinformatics, 2006

Segmented Confidence Approximates Jumping HMM Approach

AluSx

AluY

AluSz

Alulr

AluSx

AluY

AluSz

Alulr

1. Target sequence

breakpoint

i\

3. Break alighment into segments

!

5. Most probable path through the segments

breakpoint

2. Alignment of query sequences

AluSx

Aluy

AluSz

Alulr

4. Confidence for segments

AluSx

AluY

AluSz

Alulr

§; j = Conf; ; * max

w
.gl lﬁﬁ l“i ”m '

.03 .05 .03 .07

w

{Si_l,jr *tm, Ifj =
S

] i—1,j' *lsy 1fj =

Overlapping Confidence Enables Exact Breakpoint Location

Using overlapping segments, starting at every nucleotide, we compute nucleotide specific support scores by
averaging all the confidence values for each segment that overlaps the nucleotide position. Per position scores in the
dynamic programming matrix, enables us to find the exact breakpoint location.

AluY

Per position supporf score

Exact breakpoint location

|

Graph Algorithm Identifies Inserted Elements

1. Make graph of all sequences labeled in dynamic Edge Creation Rule:
programming. Each labeled segment becomes a node Create edge if the destination’s best label has a

: : : ll . confidence > 0.01 in the source

1 2 3 4 5 B .50 A .60
C .45 B .25
1 A .05 C .15
2. Find alternative paths through the graph based on 3. Splice out all sequences with no alternate paths
confidence
. 5 3 4 c 1 2 3 4 5
| |

1

4. Splice corresponding positions out of dynamic programming matrix, stitching
the original sequence back together

~J~J00 0o~
OoON

ccog |8

Example: chr11:11,989,996-11,992,119

RepeatMasker v4.08,.7 Dfam_2.98 : Current Dataset
L2c_3end L2c_3end

J

FLAM_CRSINE/A U

Image source: UCSC genome browser

L2c_3end

i

LTR40b == ———— — —
liif;i — /T — —- o
= g _n
FLAM_C — I - |
— - — Highest confidence
MSTB1 = D —— _

B s
AT w
. . . . T F= _-‘-.-."';'._!:I-J .
Heatmap of support scores used in dynamic programming matrix - demonstrates how %& '=-
the inserted elements are identified and the original sequences are stitched back 4 -1:;"}';;1‘..-. .
et
together. ‘.r g

Works Cited: [1] Bailey, JA, et all, Science, 2002 [2] hmmer.org v3.1 [3] Schultz, AK et all, BMC Bioinformatics, 2006 [4] Smit, A, Hubley, R, RepeatMasker, 2013 [5] Yu, YK et all, PNAS, 2003
Research funded by: NIH P20GM103546, 5U24HG010136

