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Probabilities           Scores 

Confidence from Alignment Scores

Adjudicating Between Competing Annotations

𝑄 ∶ 𝑞!, 𝑞", 𝑞#, … , 𝑞$ (where 𝑞 can be a sequence or pHMM)

Define 𝑷 𝒒𝒊 𝒕 : probability that the true label of 𝑡 is 𝑞&

Assuming alignments cover all possible explanations for 𝑡:

𝑪𝒐𝒏𝒇 𝒒𝒊 𝒕 =
𝑷 𝒒𝒊 𝒕
∑𝒋𝑷 𝒒𝒋 𝒕

We don’t have 𝑃 𝑞& 𝑡 , but Bayes’ rule says: 

𝑷 𝒒𝒊 𝒕 = 𝑷 𝒕 𝒒𝒊 ∗
𝑷(𝒒𝒊)
𝑷(𝒕)

Assuming uniform distribution over 𝑃(𝑞&), and with a fixed 𝑡, 
𝑷 𝒒𝒊 𝒕 ∝ 𝑷 𝒕 𝒒𝒊 . So, 

𝑪𝒐𝒏𝒇 𝒒𝒊 𝒕 =
𝑷 𝒕 𝒒𝒊
∑𝒋𝑷 𝒕 𝒒𝒋

Given scoring matrix, alignment scores are (scaled) log odds ratios:

𝑺𝒄𝒐𝒓𝒆 𝒂, 𝒃 = 𝒊𝒏𝒕 𝝀 ∗ 𝒍𝒐𝒈𝟐
𝑷 𝒂, 𝒃 𝒉𝒐𝒎𝒐𝒍𝒐𝒈𝒚

𝑷 𝒂 𝑷 𝒃
𝜆 : scaling factor of scoring matrix

Over entire alignment:

𝒔𝒄𝒐𝒓𝒆 𝒕, 𝒒𝒊 = 𝝀 ∗ 𝒍𝒐𝒈𝟐
𝑷(𝒕|𝒒𝒊) [model of homology]
𝑷 𝒕 𝑹 [R=random model]

So:

𝑷 𝒕 𝒒𝒊 = 𝑷 𝒕 𝑹 ∗ 𝟐 )𝒔𝒄𝒐𝒓𝒆(𝒕|𝒒𝒊)
𝝀

𝑪𝒐𝒏𝒇 𝒒𝒊 𝒕 =
𝑷 𝒕 𝑹 ∗ 𝟐 )𝒔𝒄𝒐𝒓𝒆(𝒕|𝒒𝒊)

𝝀

∑𝒋𝑷 𝒕 𝑹 ∗ 𝟐 )𝒔𝒄𝒐𝒓𝒆(𝒕|𝒒𝒋)
𝝀

𝑪𝒐𝒏𝒇 𝒒𝒊 𝒕 =
𝟐 )𝒔𝒄𝒐𝒓𝒆(𝒕|𝒒𝒊)

𝝀

∑𝒋𝟐
)𝒔𝒄𝒐𝒓𝒆(𝒕|𝒒𝒋)
𝝀

The Problem: Selecting From Competing Annotations
A common annotation process:
• Compare an un-annotated sequence (the Target) to 

a large collection of known sequences (the Queries)
• Sometimes, more than one of the Queries shows a 

significant match to the Target
• Pick ‘true’ matching query based on highest 

alignment score
• Falsely implies certainty of the true match
• When two or more sequences match with high 

alignment scores, this method is no longer reliable, 
because it is possible that either one is the true 
sequence. 

• Relevant in databases with highly similar sequences
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Reliability of Competing Annotations
Annotations of biological replicates should
agree. Among transposable elements in
humans, more than 10% of annotations
disagree.

Image source: 
dfam.org

Confidence can also be used to:

2. Detect boundaries of neighboring partial element matches

Target sequence  
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breakpoint
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Jumping Profile Hidden Markov 
Model (ideal)
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The generalized problem for estimating each emission
distribution and each distribution of possible transitions
out of a state is the following. We are given a count vector

 = (n1,...,ns), where s is the number of emissions (or tran-

sitions, respectively) out of this state. For example, we
have s = 4 in case of nucleotide emissions. ni is the number

of times the ith emission (or transition) is observed. These
observed frequencies  are distributed according to a

multinomial distribution with parameters  = (p1,...,ps),

where pi is the probability of observing option i. For this

problem of estimating  given , we chose a Bayesian

approach as in [30]. This means we assume a prior distri-

bution on the set of all possible , and then estimate 

by the following conditional expectation

E( | ).

We model this prior knowledge using a Dirichlet distribu-
tion [30] which has parameters  = (α1,...,αs). These

parameters can be interpreted as pseudocounts that are
added to the observed counts. For the emission probabil-
ities we estimated the parameters  of the prior distribu-
tion with a Maximum Likelihood approach [30] based on
the input multiple alignment. For the transition probabil-
ities we used the parameters  of the prior distribution
taken from [31]. Those were shown to perform better than
the parameters derived by Maximum Likelihood.

In contrast to the transitions within a subtype of the
jpHMM, jumps between subtypes cannot be observed in
the input alignment data. Since we cannot estimate the
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Simplified topology of a jumping profile HMM (jpHMM)Figure 3
Simplified topology of a jumping profile HMM (jpHMM). The sequence family  is partitioned into k subtypes 1,..., k. Each 
subtype is modeled by a profile HMM here pictured as a dashed box. Arrows indicate possible transitions between states 
within the same subtypes and transitions between different subtypes, so-called jumps. For clarity we omit insert and delete 
states of the profile HMMs and sketch a case where the first three columns are consensus columns.
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One approach for identifying breakpoints:
• Sub-model HMM for each subfamily in the alignment
• Allows transitions (jumps) between submodels
• Combinatoric explosion of transitions unless the number of 

possible jumps is constrained

Image source: Schultz, AK et all, BMC Bioinformatics, 2006
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1. Target sequence
2. Alignment of query sequences

3. Break alignment into segments 4. Confidence for segments

5. Most probable path through the segments
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breakpoint

!",$ = &'()",$ ∗ max .
/"01,$2 ∗ 34,
/"01,$2 ∗ 35,

If 6 ≠ 68
If 6 = 6′j’

Segmented Confidence Approximates Jumping HMM Approach

3. Identify inserted elements

Graph Algorithm Identifies Inserted Elements

Example:  chr11:11,989,996-11,992,119 

Works Cited: [1] Bailey, JA, et all, Science, 2002  [2] hmmer.org v3.1 [3] Schultz, AK et all, BMC Bioinformatics, 2006 [4] Smit, A, Hubley, R, RepeatMasker, 2013  [5] Yu, YK et all, PNAS, 2003
Research funded by: NIH P20GM103546, 5U24HG010136

Overlapping Confidence Enables Exact Breakpoint Location

8Genome

MIR
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Alignment 
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Confidence 
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37 .66

36

30 .01

.33

This allows us to:
• “Ambiguate” 

competing 
annotations (Shows 
a more accurate 
depiction of 
annotation 
certainty)  or

• Produce a set of 
appropriate, 
probabilistically 
labeled annotations

Assumptions:
• Consistent background 

frequencies
• Consistent alignment 

boundaries

1. Identify instances of gene conversion / homologous 
recombination

Sequences can also insert themselves 
inside of other sequences. 
• B and C have both inserted 

themselves inside of A
• Traditional annotation methods 

would find 3 occurrences of 
sequence A 

• We want to find the 3 occurrences 
of A and  recognize them as all 
belonging to the same original 
sequence

chr11:11,989,996-11,992,119
Simple nesting of families with some ovlerlapping sequence.

ex3_hg38_nesting

Heatmap of support scores used in dynamic programming matrix - demonstrates how 
the inserted elements are identified and the original sequences are stitched back 
together.

Image source: UCSC genome browser
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Dealing with Inserted Elements
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Dealing with Inserted Elements
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1. Make graph of all sequences labeled in dynamic 
programming. Each labeled segment becomes a node

2. Find alternative paths through the graph based on 
confidence

3. Splice out all sequences with no alternate paths

4. Splice corresponding positions out of dynamic programming matrix, stitching 
the original sequence back together

Edge Creation Rule:
Create edge if the destination’s best label has a
confidence > 0.01 in the source

B  .50
C  .45
A  .05

A  .60
B  .25
C  .15

Using overlapping segments, starting at every nucleotide, we compute nucleotide specific support scores by 
averaging all the confidence values for each segment that overlaps  the nucleotide position. Per position scores in the 
dynamic programming matrix, enables us to find the exact breakpoint location. 
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