Coupled Functions

© Copyright 2020 Kenric P. Nelson

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an “AS IS” BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Rev. 11 Kenric Nelson
Added Coupled Box-Miiller Method

Rev. 10 Kenric Nelson

The compact-support domain of the CoupledNormalDistribution was producing a Power error message
duel/ \/6 This was because CoupledExponential was defaulting to zero even for the reciprocal of
zero. Updated CoupledNormalDistribution to be defined over the proper range for the compact-sup-
port domain. Updated CoupledExponential to evaluate to infinity for 1/0 situations. Also updated the
CoupledExponentialDistribution functions.

The CoupledMultivariateDistribution function still needs attention.

Rev.9
Add translators between the coupling (k), risk (r), and Tsallis (g)

Rev. 8

a) Added clear and memory to each function. When the notebook is run it will clear the memory of that
function. Each time the function is executed the result will be stored in memory, so that computation
with the same inputs does not need to be repeated.

b) reordered coupling input to be consistent with StudentsTDistribution and related Wolfram functions

Rev. 7 Removed the parameter alpha from the definition of the coupled exponential and logarithm.
This is preparation for experimenting on the proper two-parameter definitions for the functions.

2 | Coupled Functions.nb

Rev. 6 Added Weighted Generalized Mean
Rev. 5 Modified Coupled Product so that dimension used on outer exponent is d times Length[xList]

Rev. 4 Added Coupled Sine and Cosine Functions
Prototype initiated of Coupled Product and Coupled Sum with structure of Mathematica Product
and Sum functions

Coupled Exponential

The variable xis applied to a coupled exponential function. & controls the degree of nonlinear statisti-
cal coupling, where =0 is linear domain of an exponential function. d and @ should match the dimen-
sion and power (x = y?) of the variable x.

Inputs

X - variable to which coupled exponential is applied

K - coupling parameter which modifies the coupled exponential function
d - dimension, should be equal to the dimension of x

1= ClearAll[CoupledExponential];
CoupledExponential[x_, x_:0,d_:1] :=
CoupledExponential[x, x, d] =
Wh'ich[

1l+dx

k>0, (1+ xX) = ,
-1/d<x<0, If[Simplify[l+xx] 20,

1+d x

(1+ xX) =,
l+dx

If|

],

x = 0, EXp[X],

>0, 0, o]
K

True, Message[CoupledExponential::nnarg, x]

n3= CoupledExponential::nnarg = "Error: x = "1/d’ 1is not greater than -1.";

Coupled Logarithm

Generalization of the logarithm function, which defines smooth transition to power functions.

Inputs
x - variable to which coupled exponential is applied
K - coupling parameter which modifies the coupled exponential function

d - dimension, should be equal to the dimension of x

ni4= ClearAll[CoupledLogarithm];
CoupledLogarithm[x_, x_:0,d_:1] :=
CoupledLogarithm[x, x, d] =
If[x =20,

If[x#0,

1 =
- (X1+dx - 1) ,
K

Log[x]

]’

Undefined

]

Coupled Gaussian - One Dimension

nel= ClearAll[CoupledNormalDistribution];
CoupledNormalDistribution[u_:0, o_, x_] =
CoupledNormalDistribution[u, o, x] =
Module[{x},
ProbabilityDistribution|

1

o (X -p)?
—————— |CoupledExponential [——, x|
NormCG[o, x] o?

If[xz20,

{x, -, =},
2 2
{Xs I-l—«[‘c_, H+ —0_}
x V' k
]

]
]

Normalization of 1-D Coupled Gaussian

\/27'(' o K ==
/7 o Gamma [2%
= k<0

V-x Gamma[l—i]

+/7 o Gamma =

1
VK Gamma[i
2x

ngl= NormCG[o_, x_] &=

True

Coupled Exponential Distribution - One Dimension

The coupled exponential distribution is also known as the generalized Pareto distribution

Coupled Functions.nb | 3

4 | Coupled Functions.nb

9= ClearAll[CoupledExponentialDistribution];
CoupledExponentialDistribution[u_:0, o_, x_] :=
CoupledExponentialDistribution[u, o, x] =
Module[{x},
ProbabilityDistribution|

1 . X-U -1
- (CoupledExponent-lal[—, X, 1]) R
o o

(X, u, If[x 20, @, — +u]}
K

]
]

Multivariate Coupled Stretched Exponential Distribution

Status: Currently only defined for @ =1 or 2 and for k> 0 and needs to be tested,;
Only defined with one dimension

Coupled Functions.nb | 5

n111= ClearAll[MultivariateCoupledDistribution];
MultivariateCoupledDistribution[u_, =_, x_, a_] :=
MultivariateCoupledDistribution[u, =, x, a] =
Module[{dimMean, dimCor, x},

(» Check that = 1is a positive

definite matrix with dimensions equal to length of u =x)

dimMean = Length[u]; dimCor = Dimensions[2];

If[dimCor # dimMean,
Message[MultivariateCoupledDistribution::argx, dimCor, dimMean]
15

If [Not@ePositiveDefiniteMatrixQ[=],
Message[MultivariateCoupledDistribution::corr]

15

If[a# (1112),
Message[MultivariateCoupledDistribution::alpha, a]

]s

(» Define the distribution)

(» Evaluation of the 1input x to CoupledExponential 1is completed to -insure
that the definition of CoupledExponential can stay one dimensional x)

x = Table[Symbol["$x" <> ToStringei], {i, dimMean}];

ProbabilityDistribution|

a
2

(CoupledExponential[((x-—u).Inverse[z].(x-—u)) y Ky dimMean]):_

NormMultiCoupled[=, x, a, dimMean] ’

(» Define the domain x)
it
| &ee
Which[a == 1, Table[{x[i]l, ©, ©}, {i, dimMean}],
a =2, Table[{x[1], -, ©}, {i, dimMean}]
1

]

MultivariateCoupledDistribution::argx =
"Length of the first dimension of the matrix
1" does not match the length of the mean "2°.";
MultivariateCoupledDistribution::corr =
"The correlation matrix = 1is not positive definite.";
MultivariateCoupledDistribution::alpha = "Alpha 1" 1is required to be 1 or 2'";

Normalization of Multivariate Coupled Stretched Exponential

Normalization has only been completed for positive values of coupling

6 | Coupled Functions.nb

nie= ClearAlTL[NormMultiCoupled];
NormMultiCoupled[=_, x_, a_, d_] :=
NormMultiCoupled[=, x, a, d] =
Which|
Det[=]1/2
a=1, ’
1+ (— 1+ d) K

A/ Det[= 112 Gamma[l—*(‘zl—*d)—"]
X

a=2 N Lrdx
x Gamma[?]

inrtel= (%
The 1dintegral for arbitrary a does not simplify;
will need to define an explicit solution or approach

) = Jax]

Assuming[w>x>08&w>a>0, ["Refine| (Coupled Exponential| (f) ,x,d])

*)

Coupled Probability

The Coupled Probability raises a distribution to the power
1 — kMult and then renormalizes the distribution. The input

The coupling term M is the multiplicative coupling. Itis
related to the source of coupling k (small kappa) by the relationship

KMult =
1+dk
where ais the power and dis the dimension of the random variable of the distribution

The function is currently written for continuous distributions,
though discrete distributions are also possible. fis required to be distribution, such that
PDF[f, {X, Xmin, Xmax}] Will produce a continuous distribution. The outputis also a new distribution

Coupled Functions.nb | 7

niop= ClearAll[CoupledProbability];
CoupledProbability[dist_, xMult_, x_, xmin_: (-o), Xxmax_ : o] :=
CoupledProbability[dist, xMult, x, xmin, xmax] =
If[xMult == @, PDF[dist, x],
Fullsimplify|
(PDF[dist, x])*~"*

[xmex (PDF[dist, y]) 1odult gy

xmin

]

Coupled Entropy

Computes the coupled entropy using the coupled logarithm and coupled probability functions.
Currently limited to one-dimensional distributions
Updated Dec 17, 2020 to call the Coupled Cross-Entropy function

Inputs

p - probability distribution, limited to one-dimension
K - coupling parameter

a - multiplicative term, defaultis 1

d - dimensions, defaultis 1

Output is the coupled entropy for a one-dimensional distribution

n21= ClearAll[CoupledEntropy];
CoupledEntropy[dist_, x_,a_:1,d_:1, limits_: {-o, o}, root_: False] :=
CoupledEntropy[dist, x, a, d, Limits, root] =
CoupledCrossEntropy[dist, dist, x, a, d, limits, root]

Coupled Cross-Entropy

Computes the coupled cross-entropy using the coupled logarithm and coupled probability functions.
Currently limited to one-dimensional distributions

Inputs

p - probability distribution, limited to one-dimension
K - coupling parameter

a - multiplicative term, defaultis 1

d - dimensions, defaultis 1

8 | Coupled Functions.nb

Output is the coupled entropy for a one-dimensional distribution

nzai= ClearAll[CoupledCrossEntropy];
CoupledCrossEntropy[distP_, distQ_,
x_,a_:1,d_:1, limits_: {-o, o}, root_: False] :=
CoupledCrossEntropy[distP, distQ, x, a, d, Limits, root] =
If[! root,

limits[2] -axK 1
—J Fullsimplify[CoupledProbability[distP, » X] (—)
Timits[1] 1+dx -a

CoupledLogarithm|[PDF [distQ, x] ™, x, d]] dx // FullSimplify,

-ax

l+dx

NIntegrate[FullSimplify[CoupledProbability[distP, s X]

CoupledLogarithm[PDF[distQ, x]™*, x, d]«], {x, Limits[1], limits[2]}]

Coupled Divergence

Computes the coupled divergence using its relationship with Coupled Entropy and Coupled Cross-
Entropy
Currently limited to one-dimensional distributions

The definition of the Coupled Divergence is notionally:

Divergence = Cross-Entropy - Entropy

- CoupledProbability[distP, ...] (CoupledLogarithm[distQ, ...] - CoupledLogarithm[distP, ...])
This is equivalent to:

CoupledCrossEntropy[distP, distQ, ...] - CoupledEntropy[distP,...]

note that for the first case the functional relationship for the generalization is the same as for k = 0.

And there is an alternative form in which the division of the densities is preserved but the

sum is generalized

For the second def

Inputs

p - probability distribution, limited to one-dimension
K - coupling parameter

a - multiplicative term, default is 1

d - dimensions, defaultis 1

Output is the coupled entropy for a one-dimensional distribution

Coupled Functions.nb | 9

niesp= ClearAll[CoupledDivergence];
CoupledDivergence[distP_, distQ_,
x_,a_:1,d_:1, limits_: {-», ©}, root_: False] :=
CoupledDivergence[distP, distQ, x, a, d, Limits, root] =
CoupledCrossEntropy[distP, distQ, x, a, d, Limits, root] -
CoupledEntropy[distP, x, a, d, Limits, root]

Coupled Product

The Coupled Product is a generalization of the product function, which raises each input to a power
and after combining the inputs, takes the root. It is defined based on the sum of arguments of the
coupled exponential:

”ﬁl@mk,d, Xi= EXpa,K,D[Z/‘il Loga,K,d,[Xi]]; D= Zlil d;

akKk

140k
= (L X - (N=1))ac; D=3, d;

Inputs

xList - list of arguments to be combined by the coupled product

K - coupling parameter

a - multiplicative term, default is 2 which is associated with coupled Gaussian distributions

d - dimension, currently defined as a constant, but planned to also except of list the same dimensions
as xList; version 5 modified the dimensions of the outer exponent to be d times Length[xList]. Thus the
inputs are assumed to be the same dimension and the output dimension is sum of the input dimen-
sions.

Output - coupled product of xList

Improvements Planned:

The dimension is defined as a constant. The dimension of each coupled logarithm should be control-
lable. The dimension of the coupled exponential should be the sum of the dimensions used for each
coupled logarithm.

The CoupledProductPrototype is intended to allow the input of arguments to be combined match the
structure of the built in Mathematica Product function. However; more extensive pattern matching is
required to process the variety of inputs possible using this structure.

Old version: CoupledProductOld works but does not build upon the coupled exponential and coupled
logarithm functions. It does compute the output dimension as a sum of the input dimensions.

10 | Coupled Functions.nb

nz71= Clear [CoupledProduct] ;

CoupledProduct[xList_, x_,a_:2,d_:1] :=
CoupledProduct[xList, x, a, d] =
CoupledExponential[Total[CoupledLogarithm[n*ﬂ x,(ﬂ &/@xList]%,
x, d Length[xList]];
(» Not used
CoupledProductPrototype[f_,index_,x_,a_:2,d_:1]:=
CoupledExponential[Sum[CoupledLogarithm[fﬂ,x,d],index]%,
x,a,d];

*)

neoi= (* Not used

CoupledProductOld[xList_,x_,a_,dList_]:=
Module[{

xMultList = Table[;iiiiﬁﬁr—,{i,Length[dList]}],
+ K

xMultOutput = — - X -
1+Sum[dList[i],{i,Length[dList]}] x
}

If[Length[dList]#1,
(Sum[(xListEi])KWﬂtHStﬁn,{i,Length[xList]}]

1

—(Length[xList]—l))EEEEE?,

(Sum[(xListrig) ™ st (4 LengthxList]}]

- (Length [XL'I St] _1)) xMultList[1]
]/;Length[xList]>1&&Length[xList]==Length[dLi5t]
*)

Coupled Sum

For two inputs the coupled sumisx+y+(-a k) xy

For more than two inputs, the solution is determined using recursion. The last element of the list is
extracted as one of the variables, and the other variable calls the coupled sum without the last element
of the list.

The input is a list of variables to be operated on, the nonlinear coupling k, and the power a affecting
the variable x%. The operator currently assumes each variable in the list is one-dimensional.

Improvement Planned
A simpler specification of the function uses the fold function. Use of alpha not equal to 1 still in evalua-
tion. Earlier plan no longer necessary:

CoupledSumPrototype will define the coupled sum in terms of the product of arguments of the
coupled logarithm. The input is intended to follow the structure of the Mathematica Sum function,
but requires additional pattern matching of input types to be fully functional.

Coupled Functions.nb | 11

In[30]:=

ni31= Clear [CoupledSum] ;
CoupledSum[xList_, x_, a_] :=
CoupledSum[xList, x, a] =
If[Length[xList] == 2,
First[xList] + Last[xList] + (-ak) First[xList] « Last[xList],
(*Else when xList > 2x)
CoupledSum[Drop[xList, -1], x, a] +
Last[xList] +
(-ax) CoupledSum[Drop[xList, -1], x, a] »« Last[xList]
1 /; Length[xList] > 1 (» only execute if length > 1 x)

CoupledSumPrototype[list_, x_, a_:1] :=
Fold [(#1%+ #2% + x #1% #2%) = &, list];

Coupled Sine and Cosine

n34= ClearAll[CoupledSin];
CoupledSin[x_, x_, a_,d_] :=
CoupledSin[x, x, a, d] =

(CoupledExponent'ia'L[i X, ky d] .-
CoupledExponential[-i x, x, d] _T)/z i

niz6i= ClearAll[CoupledCos];
CoupledCos[x_, k_,a_, d_] :=
CoupledCos[x, x, a, d] =

(CoupledExponent‘ial [i X, x, d] 4

-1
CoupledExponential[-i x, x, a, d] 7)/2

Weighted Generalized Mean

Computes the weighted generalized mean of a list. For a 2-D list the weighted generalized mean of
each column is computed. The weights are normalized, thus weights equal to one correspond to the
generalized mean

V= (g)

Inputs:

X-aone ortwo dimensional list of variables

W - scalar, vector, or matrix of weights which modify the contribution of each input X;
p - scalar, power for the generalized mean

12 | Coupled Functions.nb

p =-1is the harmonic mean
p= 0 is the geometric mean
p = 1isthe arithmetic mean
p = 2isthe root mean square

Outputs:
Y - scalar or vector of weighted generalized mean; for 2-D input mean of the first dimension is computed

nzs;= ClearAll[WeightedGeneralizedMean];
WeightedGeneralizedMean[X_, p_, W_:1] :=
WeightedGeneralizedMean([X, p, W] =
Module[{n, m, i, j, normW, sumW, XArrayDepth, WArrayDepth, Y},

XArrayDepth = ArrayDepth[X];
Which[
XArrayDepth == 1, {n} = Dimensions[X],
XArrayDepth == 2, {n, m} = Dimensions[X],
XArrayDepth > 2, WeightedGeneralizedMean::argx =
"Warning: Inputs X expected to have ArrayDepth of 2"
15

If[Length[p] > 0, WeightedGeneralizedMean::argx =
"Warning: Input p expected to be a scalar”
13
Assert[True];
(» Check dimensions of W and initialize normw
expand scalar to matrix size of X
expand column vector into n rows
or set message warning about mismatch in sizex)
WArrayDepth = ArrayDepth[W];
If [XArrayDepth == 1,
Which[WArrayDepth == ®, normW = Table[W, n],
WArrayDepth == 1, normW = W,
WArrayDepth > 1, WeightedGeneralizedMean::argx =
"Warning: Input W expected to have same or less depth than X"
1
(*Else if XArrayDepth == 2 x)
Which[WArrayDepth == ®, normW = Table[W, {n}, {m}],
WArrayDepth == 1, normW = Table[W, m] // Transpose,
WArrayDepth == 2, normW = W,
WArrayDepth > 2, WeightedGeneralizedMean::argx =
"Warning: Input W expected to have ArrayDepth of 1 or 2"

15

Coupled Functions.nb | 13

15
If[Dimensions[normW] # Dimensions[X], WeightedGeneralizedMean::argx =
"Dimensions of X and resized W do not match"];

If[XArrayDepth == 1, Module[{},

Assert[True];
n
sumW = normWgsy 3

normW
b

normwW =
sumwW

Quiet[If[p# 6,

. L
Check|Y = (Z normWgy XE-]]]] TN,

i=1
Y=If[p>0, Max[X], Min[X]]

]
n normw[[i]]
Y=T]Xm H//N
i=1

1]
B
Module[{},
Y = Table[0, m];

(* Loop column and rows to compute weighted generalized mean x)
For[j = 1,3 sm, j++,

n
D normigs,jp;
=

sumW

normWpatt, iy
normW[[Au,j]] = —_——— ;

sumW
Quiet[If[p # 0,
n 1
Check[Yypjy = [Z normWs 57 Xf4, 43 "IN,
i=1
Yrig = If[p > 0, Max[Xgatt,jpl s Min[Xgate, 311

]s

D normWr; 5
Yosp = [[Xeat 1 7/ N
=1

(*Print[sumW] ;*)
Assert[True];

14 | Coupled Functions.nb

N[Y, 5] (* Set output of module =x)
(*{normwW,XArrayDepth,WArrayDepth} %) (* Monitor Variables x)

B
Variable transformations
risk and coupling Domain Dual

niaer= riskDomainDual[r_, a_:2, d_:1] := riskDomainDual[r, a, d] =

-ar

b
a+dr

ni0;= couplingDomainDual[x_, a_:2, d_:1] := couplingDomainDual[x, a, d] =

- K

H
l+dx

Coupling to Risk and Risk to Coupling

ni41:= couplingToRisk[x_, a_:2,d couplingToRisk[x, a, d]

-ax

b
l+dx

11] :

ni2;= riskToCoupling[r_, a_:2,d riskToCoupling[r, a, d]

-r

$1] ¢

)
dr +a
RiskQDual
ni43;= riskQDual[rORq_] :=1-rORq;
gToCoupling and couplingToq
na4= couplingToq[x_, a_:2,d_:1] := couplingToq[k, a, d] =
1 - couplingToRisk([x, a, d];

ni4si= qToCoupling[q_, a_:2, d_:1] := qToCoupling[q, a, d]
-(1-q)
a+d (1-q)

Coupled Box-Mtller Method

The coupled Box-Muller algorithm than has the following procedure.

1) Draw two uniform random variables Ul and U2 over the range 0 to 1.
2) Apply the generalized transformation (Z;, Z;) = T(U3, U,) where T is

Z1= \/an(sz) cos(2 1T U;)
Z= \/an(ng) sin(2 it Uy).

In this case the dimension of the logarithm is zero and thus the variable U does not need to be raised to
a power.

3) (Zi1, Z2) forms a two-dimensional coupled Gaussian distribution with p; =, =0 and

Coupled Functions.nb | 15

Il= (é (1)) For a set of independent random variables only one of the two variates should be

selected, since although uncorrelated (no cross terms in the correlation matrix) the variates are depen-
dent since the joint distribution cannot be factored.
4) The location and scale for the coupled Gaussian variates are addedto Zby X=py+ o Z.

In[46]:=
Clear [CoupledVariate];
CoupledVariate[u_:0, o_:1,x_, n_:1] :=Module]
{UniformVariates = RandomReal[{0®, 1}, 2 n], CoupledNormalVariates},
CoupledNormalVariates =

If[n=1,
—JCoupledLogarithm[UniformVariatesEl]'z,x, 0] Cos[2 wUniformVariates[-111],
Table[
‘JCoupledLogarithm[UniformVariatesEi]'z,Kg 0] Cos[2xUniformvariates[-i]],
{i, n}

]
B

u + o CoupledNormalVariates

]s

