
Generating Coupled Exponential Random Variables

Coupled Box-Müller Method

Multivariate Coupled Box-Müller Method

The method is based on polar version of the Box-Muller method. The advantage is there is a clear 
procedure for extending the method to multiple dimensions. The disadvantage is that method uses 

sample rejection to form a unit n-sphere. Since the n-sphere is based on R2 = x12 + ... xn2as n increases the 

number of rejected samples increases.  This will make the algorithm very slow for large dimensions.
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Clear[CoupledVariate];
CoupledVariate::lsigma =

"Length of scale `1` does not equal length of mean `2`";

CoupledVariate[μ_ : 0, Σ_ : 1, κ_ : 1, n_ : 1] := Module

{UniformVariates, CoupledNormalVariates, radiusSquared,
dimMean, dimScale, σAdj, j},

dimMean = Length[μ];

σAdj = IfdimScale = Length[Σ] ≠ dimMean,

Message[CoupledVariate::lsigma, dimScale, dimMean];
(*If[dimScale>dimMean,
Σ〚;;dimMean〛,
PadRight[Σ,dimMean-dimScale,1],
Σ

]*)

;

UniformVariates = Table[0, n, Max[2, dimMean]];
radiusSquared = Table[0, n];

Forj = 1, j ≤ n, j++,

WhileNot[0 < radiusSquared〚j〛 < 1],

UniformVariates〚j〛 = RandomReal[{-1, 1}, Max[2, dimMean]];

(* Dividing by Max[2,dimMean] seems to make solution closer to a

multivarirate t distribution, but needs to be proven; also this factor
shouldn't change radiusSquared from being a uniform distribution,

but it will reduce the number of rejections; furthermore this should
be the same a drawing from a domain reduced from from {-1,1} *)

radiusSquared〚j〛 = (* 1
Max[2,dimMean]

*) 
i=1

Max[2,dimMean]
UniformVariates〚j, i〛2;



;



Ifn ⩵ 1,

CoupledNormalVariates =

Table
CoupledLogarithmradiusSquared〚1〛-2, κ, 0

radiusSquared〚1〛
UniformVariates〚1, i〛,

{i, dimMean}

;

μ + CoupledNormalVariates.CholeskyDecomposition[Σ],

Table

CoupledNormalVariates =

Table
CoupledLogarithmradiusSquared〚j〛-2, κ, 0

radiusSquared〚j〛
UniformVariates〚j, i〛,

{i, dimMean}

;

μ + CoupledNormalVariates.CholeskyDecomposition[Σ],
{j, n}





;

Examples compared with Mathematica MultivariateT generation

������ ListPointPlot3D[
CoupledVariate[{0, 0, 0}, {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}, 1, 10000],
PlotTheme → "Detailed",
AxesLabel → {"x", "y", "z"},
PlotRange → Table[{-25, 25}, 3]

]
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������ ListPointPlot3D[RandomVariate[
MultivariateTDistribution[{0, 0, 0}, {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}, 1], 10000],

PlotTheme → "Detailed",
AxesLabel → {"x", "y", "z"},
PlotRange → Table[{-25, 25}, 3]

]
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Examples side by side of CoupledVariate (le� or top) and MultivariateT (right or bottom) variates show 
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reasonable similarity

[{mean},{correlation matrix}, coupling, samples]
[{-2,1,1},{{4,1,0},{1,2,1},{0,1,1}},3,10000]

[{-2,1,1},{{4,1,0},{1,2,1},{0,1,1}},5,10000]

4 ���  RandomCoupledVariate.nb



Cauchy Standard
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Plots with κ  multiplied by 1/σ

Backup  of Originals Generate and Plot Examples

Higher values of coupling

Visual Comparison Coupled Stretched Exp and Mittag-Leffler Distributions
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