SDS Library Documentation

Andrew Owen Martin
a.martin@gold.ac.uk
Goldsmiths, University of London
Department of Computing

June 9, 2018

Contents
1.1 TInitialisationl
(.2 Agent iterable function|
(1.3 Agenttuple

2.1 Standard test phase

2.2 Comparative test phase|. . . .

2.3 Generic test phasel.

2.4 Generic single agent test] . . .

13

Diffusion phase|

10

12

13

a.martin@gold.ac.uk

4.5 Handlehalting|. 0 L.

(5

Reporting functions|

p.1 Basicreport| o o oo

.2 Handle reporting function|

6 Teration functions

7

oupled SD

[7.1 Coupled diffusion|. o oo

[72 Coupledtestphasel

[7.2.1 ~ Synchronous coupled testphase|

[7.2.2 Sequential coupled testphasel

[7.3 Couplediteration| 0.

21

21

22

23

24

25

26

26

26

27

27

29

31

33

35

37

39

41

[8 Analysis functions|

8.2 Calculate Activity| o oo

(8.3 Estimate Uniform Background Noise|.,

[8.o Prettyprinting|. oo o o

[0 Multilayer SDS|

9.2 Multilayer SDS factory function|.

0.3 Random hypothesis, and single diffusion functions|

9.4 Flatten hypothesis function|

0.6 MSDSExamplel

(10 Multilater SDS implemented with the library|

(11 String search implemented with the library|

(12 Stochastic Diffusion Sort implemented with the library|

(13 SDS Daemon implemented with the library|

(14 Data-driven SDS implemented with the library|

(15 Coupled SDS implemented with the library|

16 SDS Simulator implemented with the library|

(17 Heterogeneous agents|

A8 Tnt Tfive Dice

49

49

50

51

53

54

54

60

62

63

63

64

66

68

69

70

71

73

75

77

81

84

(19 True Restaurant Game|

20 Library definition|

20.1 Deploying to PyPi|

21 Mathematical library definition|

[21.1 Interacting Markov Chain Model|

86

90

96

96

First we define an agent, then the functions for the Test Phase, the Diffusion Phase,
Halting functions, Iteration functions...

1 Agent

An agent maintains two variables; whether or not it is active and its hypothesis. The
class also has a method for initialising a swarm of a given size, all agents are
initialised as inactive and with no hypothesis. This necessitates that the Diffusion Phase
is run first, such that all agents generate a hypothesis before the test phase.

Defining __slots__ ensures agents can have no attributes other than those listed, for a
slight reduction in memory usage per agent.

(agent class definition [5) = (91)
class [Agent]:
mn \

Data structure for defining an SDS [Agent|, can only maintain the

attributes ’hypothesis’ and ’active’.\
e

__s8lots__ = (’hypothesis’,’active?’)

def __init__(self, hypothesis=None, active=False):
||ll||\
Initialise an agent with specific values for hypothesis and active.
Defaults to inactive with no hypothesis.\

self .hypothesis = hypothesis
self.active = active
(initialise a list of agents function
(agent iterable function

Defines:

Agent, used in chunks|[6a] [B5] 51} 52} 554] [66} and 86

[6al

1.1 Initialisation

(initialise a list of agents function |al) = (E)
@staticmethod
def [initialise|(agent_count):
N
Returns a list of length agent_count, of inactive Agents with no
hypothesis; suitable for use as a swarm. For example:
swarm = sds.[Agent|.[initialisel(agent_count=1000)

return [
[Agent|(hypothesis=None, active=False)
for _
in range(agent_count)
]
Defines:
initialise, used in chunks[51} B2} [66} [68-70} [72} [73} [75} [81} [84] and [86]
Uses Agent 5]

Here are two ways to initialise a swarm of 100 agents. Firstly, with the
function.
swarm = [Agent|.[initialisel[(agent_count=100)

Secondly, with a list comprehension.
agent_count=100

swarm = [[Agent|() for _ in range(agent_count)]

1.2 Agent iterable function

This makes an iterable, which means the values of an agent can be unpacked
with hypothesis, active = agent.

(agent iterable function b)) = &)
def __iter__(self):

""" Tterating over amn agent returns its hypothesis, then its

Activityl.

yield self.hypothesis
yield self.active

Uses activity

1.3 Agent tuple

It may prove useful to have a minimal implementation of a read only and hashable
object for an agent.

(agent namedtuple|7a) = (1)
ReadOnlyAgent = namedtuple ("ReadOnlyAgent", ("hypothesis","active"))

ReadOnlyAgent.__doc__ = """\

namedtuple representation of an agent. Attributes are hypothesis and
active.\

(library dependencies [7b)) = (01) BZal>

from collections import namedtuple

You can therefore make a read-only copy of a swarm like this.

read_only_swarm = [ReadOnlyAgent._make(agent) for agent in swarm]
This works because[Agent]is iterable (See chunk (agent iterable function|eb))) and collections.namedtuple..
maps a sequence into the attributes of a namedtuple.

2 Test phase

2.1 Standard test phase

This is a convenience function, allowing convenient application of the Standard test
phase. Standard in this sense refers to a test phase which assumes the agents activities
will be set to the value returned from the microtests, i.e. the microtest return values are
boolean. Microtests may return integer or float values, but all values will be treated as
active, except for 0.

This is a destructive function, modifying the swarm in place.

=]

B (test phase functionlg)=

def [test_phase|
swarm,
microtests,
multitesting=1,
multitest_function=all,
synchronous=True,
rng=random,

nn II\

Perform a test phase with boolean microtests.

This function returns a generator which must be consumed once for each
agent.\

test_phase_generator = [generic_test_phase(
swarm=swarm,
microtests=microtests,
multitesting=multitesting,
multitest_function=multitest_function,
compare=False,
synchronous=synchronous,

rng=rng,

for _ in test_phase_generator:
yield

Defines:

test_phase, used in chunks[9] [10] 27} 29} B1} 35} B9} and [70]

Uses generic_test_phase

2.2 Comparative test phase

This test phase variant determines the activity of each agent by comparing the score of
their test functions with that of a randomly chosen agent.

(comparative test phase function p) = (91)
def |comparative_test_phase(
swarm,
microtests,

multitesting=1,
multitest_function=max,
synchronous=True,
rng=random,

nn ll\
Performs a test phase with scalar microtests, an agent becomes active
if their microtest result is larger than that of a randomly chosen

agent.

This function returns a generator which must be consumed once for each
agent .\

[test_phase| = [generic_test_phase(
swarm=swarm,
microtests=microtests,
multitesting=multitesting,
multitest_function=multitest_function,
compare=True,
synchronous=synchronous,

rng=rng,

for _ in [fest_phase]:
yield
Defines:

comparative_test_phase, used in chunks[I0] [31}[69] and [84}
Uses generic_test_phase and test_phase

2.3 Generic test phase

=]

(generic test phase function [10) =
def |generic_test_phase|(

swarm,
microtests,
multitesting=1,
multitest_function=None,
compare=False,
compare_to_boolean=False,
synchronous=True,
rng=random,

nn ll\
Perform a test phase. Fully configurable. Consider using the more

convenient and readable functions [test_phase| and [comparative_test_phase| \
nun

if compare:

multitest_function max

else:

multitest_function = all
def make_test (hyp):
return multitest_function(
rng.choice(microtests) (hyp)
for test_num
in range(multitesting)

if compare and synchronous:

test_results = (
make_test(agent.hypothesis)
for agent
in swarm

test_results = list(test_results)

if compare_to_boolean:
test_results = [
test_result > rng.choice(test_results)
for test_result
in test_results

10

for agent, test_result in zip(swarm, test_results):

agent.active = test_result
yield

else:

for agent in swarm:

l[generic_single_agent_test|(
agent,
swarm,
microtests,
compare,
compare_to_boolean,
multitesting,
multitest_function,

yield

Defines:
generic_test_phase, used in chunks|[8 [9] and [81]
Uses comparative_test_phase @ generic_single_agent_test and test_phase

11

2.4 Generic single agent test

Note that in the comparative version, potentially both agents perform a different mi-
crotest (or set of microtests if multitesting > 1).

(generic single agent test function [12) = (91)
def |generic_single_agent_test|(
agent,
swarm,
microtests,
compare,
compare_to_boolean,
multitesting,
multitest_function,
rng=random,

"II"\
Peform a random microtest, and set the [activity], for a single agent.\

try:
test_result = multitest_function(
rng.choice(microtests) (agent.hypothesis)
for multitest_num
in range(multitesting)
)

except TypeError:
raise TypeError("Something is None, multitest_function: {mtf}, microtests: {mt}"
mtf=multitest_function,

mt=microtests,

))
if compare and compare_to_boolean:
polled_hypothesis = rng.choice(swarm).hypothesis
polled_result = multitest_function(
rng.choice(microtests) (polled_hypothesis)
for multitest_num
in range(multitesting)

test_result = test_result > polled_result

agent.active = test_result

Defines:
generic_single_agent_test, used in chunks|10jand
Uses activity

12

3 Diffusion phase

These are all destructive functions, modifying the swarm in place.

3.1 Active? Dual?

Can they be done? Bish wants them to be switches separate from context-sensitive and
context-free.

3.2 Passive diffusion

This is the diffusion function used in Standard SDS.
(passive diffusion function [13)=

def [passive_diffusion|(
swarm,
random_hypothesis_function,
multidiffusion=1,
rng=random,

=]

nn II\

Perform a passive diffusion phase.

This function returns a generator which must be consumed once for each
agent.\

diffusion_phase = |generic_diffusion(
swarm,
random_hypothesis_function,
context_free=False,
context_sensitive=False,
multidiffusion=multidiffusion,

passive=True,
active=False,
rng=rng,

for _ in diffusion_phase:
yield
Defines:

passive_diffusion, used in chunks[18] [35] 55b} B8b| (68} [70] [72} [73] [75] [77} [81} and [86]

Uses generic_diffusion[I§]

13

3.3 Context-free diffusion

Similar to passive diffusion, only active agents may become inactive and generate a
new hypothesis if they poll an agent which is also active. As active agents may be
modified by this process it is necessary to take a snapshot of the state of the swarm
before any modification happens, this is the 01d_swarm variable which is populated at
the beginning of the phase and never modified.

(context free diffusion function [14) = (91
def [context_free_diffusion|(
swarm,

random_hypothesis_function,
multidiffusion=1,
passive=True,

active=False,

rng=random,

nn ||\

Perform a context free diffusion phase.

This function returns a generator which must be consumed once for each
agent.\

diffusion_phase = |generic_diffusion|(
swarm,
random_hypothesis_function,
context_free=True,
context_sensitive=False,
multidiffusion=multidiffusion,
passive=passive,
active=active,

rng=rng,

for _ in diffusion_phase:
yield
Defines:

context_free_diffusion, used in chunks[18] 31} 56} [77 and [84
Uses generic_diffusion[I§]

14

3.4 Context-sensitive diffusion

Similar to context-free diffusion, only active agents may become inactive and generate
a new hypothesis if they poll an agent which is active and both agents share the same
hypothesis.

(context sensitive diffusion function [15)= (91)
def [context_sensitive_diffusion|(
swarm,

random_hypothesis_function,
multidiffusion=1,
passive=False,
active=False,

rng=random,

nn II\

Perform a context sensitive diffusion phase.

This function returns a generator which must be consumed once for each
agent.\

diffusion_phase = |generic_diffusion(
swarm,
random_hypothesis_function,
context_free=True,
context_sensitive=True,
multidiffusion=multidiffusion,
passive=passive,
active=active,
rng=rng,

for _ in diffusion_phase:
yield

Defines:
context_sensitive_diffusion, used in chunks and
Uses generic_diffusion[I§]

3.5 Generic diffusion

The behaviour of passive, context-free and context-sensitive diffusion can be captured
in a single, five-variable truth table (Table [I), and then represented as a five-variable
Karnaugh map (Table 2). From Table 2Jone can derive the logic for Algorithm

15

CF(E) CS(D) a.active(A) p.active (B) hyp==hyp (C) Response

F F F F F Random hyp
F F F F T Random hyp
F F F T F Copy hyp
F F F T T Copy hyp
F F T F F Maintain hyp
F F T F T Maintain hyp
F F T T F Maintain hyp
F F T T T Maintain hyp
F T F F F Don’t care
F T F F T Don’t care
F T F T F Don’t care
F T F T T Don’t care
F T T F F Don’t care
F T T F T Don’t care
F T T T F Don’t care
F T T T T Don’t care
T F F F F Random hyp
T F F F T Random hyp
T F F T F Copy hyp
T F F T T Copy hyp
T F T F F Maintain hyp
T F T F T Maintain hyp
T F T T F Random hyp
T F T T T Random hyp
T T F F F Random hyp
T T F F T Random hyp
T T F T F Copy hyp
T T F T T Copy hyp
T T T F F Maintain hyp
T T T F T Maintain hyp
T T T T F Maintain hyp
T T T T T Random hyp

Table 1: The truth table for a combination of passive, context-free and context-
sensitive diffusion. CF=isContextFree, CS=isContextSensitive, a.active=agentIsActive,
p-active=polledIsActive, hyp==hyp=hypEqualsHyp

Algorithm 1 Generic diffusion

1: if A A B then

Copy hypothesis (State 2)
elseif AVBAEA (CV D) then

Random hypothesis (State 1)
else

Maintain hypothesis (State 3)

16

s SIS NN

W wN =gl
Wk N0
W wWN =m0
XX X X |mg o
WWwN =m0
W= N= | mgn
WR N~ [MmOOn
XXX X |mgno

Table 2: Five variable Karnaugh map of the diffusion truth table (Table [I).
A = agent is active, B = polled agent is active, C = agent and polled agents share a
hypothesis, D = context-sensitive diffusion, E = context-free diffusion. 1 is random hy-
pothesis, 2 is copy hypothesis, 3 is maintain hypothesis.

17

When Context Sensitive or Context Free is being used, then a read-only copy of the
swarm must be taken before any of the agents are modified. Otherwise, this function
simply performs the diffusion process on each agent.

(generic diffusion function [18)= (91
def |[generic_diffusion/(
swarm,

random_hypothesis_function,
context_free,
context_sensitive,
multidiffusion,

passive,

active,

rng=random,

nn ||\
Perform a diffusion phase, fully configurable. Consider using the more
convenient and readable functions |passive_diffusion|,
[context_free_diffusion| and [context_sensitive_diffusion|.

This function returns a generator which must be consumed once for each
agent.\

if context_sensitive:
context_free = True

if context_free and not active:

old_swarm = [ReadOnlyAgent(a.hypothesis,a.active) for a in swarm]
else:

old_swarm = swarm

for agent in swarm:

lgeneric_single_agent_diffusion|(
agent,
old_swarm,
random_hypothesis_function,
context_free,
context_sensitive,

multidiffusion,
passive,
active,
rng,

)

yield

Defines:
generic_diffusion, used in chunks|13-15

Uses context_free_diffusion@ context_sensitive_diffusion@ generic_single_agent_diffusion

and passive_diffusion[I3]

18

3.6 Generic single agent diffusion

M (generic single agent diffusion function [19)=

def |generic_single_agent_diffusion|(

agent,

swarm,
random_hypothesis_function,
context_free,
context_sensitive,
multidiffusion,

passive,

active,

rng=random,

nn ||\

Perform diffusion, and set the hypothesis for a single agent.\

Defines:

(handle multidiffusion

if (
(active and agent.active and (not polled_agent.active))
or
(passive and (not agent.active) and polled_agent.active)
):
if agent.active:
polled_agent.hypothesis = agent.hypothesis
else:
agent.hypothesis = polled_agent.hypothesis
elif (
not agent.active
or
polled_agent.active
and context_free
and (
not context_sensitive
or agent.hypothesis == polled_agent.hypothesis
)
):
agent.active = False
agent.hypothesis = random_hypothesis_function(random)

generic_single_agent_diffusion, used in chunks|l18land

19

3.7 Multidiffusion

The job here is to populate polled_agent appropriately, and the way it is done is by
setting polled_agent to the elements of a random agent generator and stopping when
an active agent is reached. If an active agent is never reached then the diffusion will
have failed. The remainder variable allows for a “real” number of diffusions, where a
fraction of a diffusion is a randomly polled agent, followed by a chance of receiving a
known inactive agent in its place.
(handle multidiffusion o) = (19)
polled_agents = (
rng.choice(swarm)

for diffusion_num
in range(int(multidiffusion))

for polled_agent in polled_agents:
if (
(passive and (not agent.active) and polled_agent.active)
or (active and agent.active and (not polled_agent.active))
break
else:
remainder = multidiffusion - int(multidiffusion)
if remainder > O:

if rng.random{() > remainder:

polled_agent = rng.choice(swarm)

20

3.7.1 Probabilistic Rounding Function

The multidiffusion and multitesting functions may benefit from using this probabilistic
rounding function. 7.1 gets rounded to 8 with probability 0.1, and rounded to 7 with
probability 0.9.

(probabilistic rounding function 21a)=
def |probabilistic_round/(num, rng=random):
Illlll\
Probabilistically round a number, the remainder is the probability of

rounding up.\

full = int(num)
remainder = num - full
if remainder > O:
roundup = rng.random() < remainder
return full + roundup

Defines:
probabilistic_round, never used.

4 Halting functions

4.1 Never halt function

(never halt function p1b)=
def never_halt|(xargs, **kwargs):
IIIIII\
Always returns false, suitable as a halting function for a perpetual
SDS.\

=]

return False

Defines:

never_halt, used in chunks and

21

4.2 Stability halt function

02| (stability halt function22)=
def make_stability_halting_function|(lower, region, time):
i
Returns a function suitable for use as a halting function. Halts, by
returning True when it detects stability, defined by:

=]

lower: Lower bound of proportion of of stability window.

region: Amount above lower which defines the upper bound of the
stability window.

time: Number of consecutive times this function must be called with
arguments within the stability window before it will halt.\

def generator_front_end(activity_count, halt_generator):
next(halt_generator)
halted = halt_generator.send(activity_count)
return halted

def is_stable_generator(lower, region, time):
success_count = 0
while True:
swarm = yield
active_count = sum(l for agent in swarm if agent.active)/len(swarm)
if active_count < lower or active_count > lower + region:
success_count = 0
else:
success_count += 1
yield success_count >= time
halting_generator = is_stable_generator(lower, region, time)
return functools.partial(
generator_front_end,

halt_generator=halting_generator,)

Defines:
make_stability_halting_function, used in chunk[77]

Uses activity

22

4.3 Instant threshold halt function

(instant threshold halt function 3)=
def make_instant_threshold _halt function|(threshold):
e\
Returns a function suitable for use as a halting function. Halts, by
returning True when the proportion of global is greater than
threshold.\

=]

def threshold_halt_function(swarm, threshold):
= sum(1 for agent in swarm if agent.active)/len(swarm)

return > threshold

return functools.partial(threshold_halt_function,threshold=threshold)

Defines:
make_instant_threshold_halt_function, used in Chunk

Uses activity

23

4.4 Threshold time halt function

04 (threshold time halt function 24) =
def make_threshold_time_halting_function|(lower, time):
e\
Returns a function suitable for use as a halting function. Halts, by
returning True when the proportion of global is greater than
threshold for a number of calls to this function defined by time.\

=]

def generator_front_end(activity_count, halt_generator):
next (halt_generator)
halted = halt_generator.send(activity_count)
return halted

def is_stable_generator(lower, time):
success_count = 0
while True:
swarm = yield
active_count = sum(l for agent in swarm if agent.active)/len(swarm)
if active_count < lower:
success_count = 0
else:
success_count += 1
yield success_count >= time
halting_generator = is_stable_generator(lower, time)
return functools.partial(
generator_front_end,

halt_generator=halting_generator,)

Defines:
make_threshold_time_halting_function, never used.

Uses activity

24

4.5 Handle halting

(handle halting function p5)=
def generic_handle_halting(
iteration_num,
swarm,
halting_iteratioms,
halting_function,
max_iterations,

E
return (
(
halting_iterations
and iteration_num % halting_iterations == 0
and halting_function(swarm)
) or (

max_iterations and iteration_num >= max_iterations

25

5 Reporting functions

5.1 Basic report

=]

(basic report function 26al) =
def basic_report(
iteration_num,
swarm,
hypothesis_string_function=str,
max_cluster_report=None,

clusters = [count_clusters|(swarm)

agent_count = len(swarm)

return "{i:4} Activity: {a:0.3f}. {c}".format(
i=iteration_num,
a=sum(clusters.values())/float (agent_count),
c=", ".join(

"{hyp}:{count}".format (
hyp=hypothesis_string_function(hyp),
count=count

)

for hyp,count

in clusters.most_common (max_cluster_report)

),
)

Uses count_clusters[49]

5.2 Handle reporting function

(handle reporting function peb)= (91)

def generic_handle_reporting(iteration_num, swarm, report_iterations, report_function):
if (
report_iterations

and iteration_num % report_iterations ==

print(report_function(iteration_num, swarm))

26

6 Iteration functions

There is trouble brewing amongst these iteration functions, they take in one of the con-
venience test phases, [test_phase|or comparative_test_phase| which means the itera-
tion functions don’t take the compare variable, but they do need to take more extraneous
variables like multitesting and multitest_function.

Theoretically the iteration functions should pass the arguments tolgeneric_test_phase)
but these iteration functions are largely for convenience anyway, so we'll stick with this
for now.

As we don’t know the value of compare we can’t determine a sensible default value for
multitest_function, which is max when compare is True and all when compare is
False.

6.1 Single iteration function

This function performs a single Diffusion Phase and a single Test Phase.

=]

(synchronous iterate function 27) =
def [synchronous_iteratel(

swarm,
microtests,
random_hypothesis_function,
diffusion_function,
test_phase_function=test_phase],
multidiffusion=1,
multitesting=1,
multitest_function=None,
rng=random,

IIIIII\
Performs a synchronous iteration, one diffusion phase for all agents
followed by one test phase for all agents.

This function returns a generator which must be consumed once for each

iteration.\
e

while True:

diffusion_phase_iterator = diffusion_function(
swarm=swarm,
random_hypothesis_function=random_hypothesis_function,
multidiffusion=multidiffusion,
rng=rng,)

for _ in diffusion_phase_iterator:

27

pass

test_phase_iterator = test_phase_function(
swarm=swarm,
microtests=microtests,
multitesting=multitesting,
multitest_function=multitest_function,
synchronous=True,
rng=rng,)

for _ in test_phase_iterator:
pass

yield

Defines:
synchronous_iterate, used in chunks35/and
Uses test_phase[§]

28

6.2 Asynchronous iteration function

This function shuffles the swarm in place, that might not be acceptable eventually, in
which case use for agent in random.sample(swarm,len(swarm).

This function doesn’t throw any exceptions, but I've not proved that it’s running asyn-
chronously.

I could make this system run more like the parallel implementation, where I callupdate_state]
rather than relying on the two synchronous phases to proceed in lock step.

(asynchronous iterate function o) = (91)
def [asynchronous_iterate|(

swarm,
microtests,
random_hypothesis_function,
diffusion_function,
test_phase_function=test_phase],
multidiffusion=1,
multitesting=1,
multitest_function=None,
rng=random,

IIIIII\
Performs an asynchronous iteration, all agents are selected in a
random order to perform one diffusion and one test in turn.

This function returns a generator which must be consumed once for each

iteration.\
e

while True:

for agent in swarm:
if agent.hypothesis is None:
agent.hypothesis = random_hypothesis_function(random)

random.shuffle (swarm)

diffusion_phase_iterator = diffusion_function(
swarm=swarm,
random_hypothesis_function=random_hypothesis_function,
multidiffusion=multidiffusion,
rng=rng,)

test_phase_iterator = test_phase_function(
swarm=swarm,
microtests=microtests,
multitesting=multitesting,
multitest_function=multitest_function,

29

synchronous=False,
rng=rng,)

for _ in zip(diffusion_phase_iterator, test_phase_iterator):
pass

yield
Defines:

asynchronous_iterate, never used.
Uses test_phase[§]

30

6.3 Parallel iteration function

I might want to check if there’s a way of making this run like the asynchronous iteration,
where I use the normal test phase and diffusion phase functions and just make them
perform randomly.

This is also a bit squirrely, as its taking in functions in the diffusion_function parame-
ter, but it’s only using them as boolean values because the actual diffusion is performed
in[generic_single_agent_diffusion|injupdate_state|

BT (parallel iterate function31) = (91)
def |parallel_iterate(
swarm,
microtests,

random_hypothesis_function,
diffusion_function,
test_phase_function=test_phase],
multidiffusion=1,

passive=True,

active=False,

multitesting=1,
multitest_function=None,
rng=random,

nn ||\

Performs a parallel iteration, all agents are updating their state (a
diffusion followed by a test) in parallel.

This function returns a generator which simply waits a short time
between yeilding, this can be used to ensure the parallel process

runs for a certain amount of wall clock time.\
e

context_free = diffusion_function is [context_free _diffusion|
context_sensitive = diffusion_function is [context_sensitive_diffusion|

compare = test_phase_function is |[comparative_test_phase|
compare_to_boolean = compare

if compare:
multitest_function

max
else:
multitest_function

all
for agent in swarm:
if agent.hypothesis is None:

agent.hypothesis = random_hypothesis_function(random)

worker_threads = (
threading.Thread(

31

target-fipdate_state,
args=(
agent,
swarm,
random_hypothesis_function,
context_free,
context_sensitive,
multidiffusion,
passive,
active,
microtests,
multitesting,
multitest_function,
compare,
compare_to_boolean,
rng,

for agent
in swarm

for worker_thread in worker_threads:
worker_thread.daemon = True
worker_thread.start ()

while True:
time.sleep(0.01)
yield
Defines:
parallel_iterate, used in chunk[33
Uses comparative_test_phase E} context_free_diffusion@ context_sensitive_diffusion@
test_phase(8] and update_state

32

3]

6.3.1 Update state function

(parallel update state function 33)) =

def [ipdate_state|
agent,
swarm,
random_hypothesis_function,
context_free,
context_sensitive,
multidiffusion,
passive,
active,
microtests,
multitesting,
multitest_function,
compare,
compare_to_boolean,
rng=random,

nn II\
Repeatedly perform a diffusion and a test for an agent, with a short
sleep. This function is a helper function to [parallel_iteratel. \

while True:

l[generic_single_agent_diffusion|(
agent,
swarm,
random_hypothesis_function,
context_free,
context_sensitive,
multidiffusion,
passive,
active,

rng,

l[generic_single_agent_test|(
agent,
swarm,
microtests,
compare,
compare_to_boolean,
multitesting,
multitest_function,

sleepy_time = min(2,max(0,random.gauss(1,1)))

time.sleep(sleepy_time)

33

Defines:
update_state, used in chunk[31}
Uses generic_single_agent_diffusion@ generic_single_agent_test @ and parallel_iterate @

34

6.4 Run function

This function performs a given number of iterations and returns a list of all the clusters
that have formed.

(run function 35) = (91)
def [runi(
swarm,

microtests,
random_hypothesis_function,
max_iterations=1000,
diffusion_functionspassive_diffusion),
halting_function=never_halt],
halting_iteratiomns=1,

multitesting=1,
multitest_function=None,
report_iterations=10,
test_phase_function=ftest_phase],
hypothesis_string_function=str,
max_cluster_report=None,
iteration_functiongsynchronous_iterate|,
multidiffusion=1,

rng=random,

IIIIII\
The main front end to the SDS library. This will forever until
manually halted, or until a halting condition is reached, afterwhich
it will return a collections.Counter of all the clusters.

:param swarm: A list of sds.[Agent| instances.

:param microtests: A collection of functions all of which take a hypothesis\
, as returned by random_hypothesis_function and return the result of a\
microtest as either a scalar value or a boolean. All tests must \

return the same type.

:param random_hypothesis_function: A function which takes a random number \
generator and returns hypothesis suitable as input for all the \

functions in microtests.

:param max_iterations: The number of iterations afterwhich the SDS will \
halt. If max_iterations=None, the SDS will never halt due to the num\

ber of iterations, but may be manually halted, or halted by the halti\

ng function.

:param diffusion_function: The diffusion function to use in the diffusion \
phase.

:param random: A random number generator, probably an instance of the rand\
om.Random class. Use an instance with an explicit seed to get repeatal

ble behaviour, else you may pass in the random module itself.

:param halting_function: (Default: [never_halt) The function which takes \
the swarm as input and returns True if its condition is met.

:param halting_iterations: (Default: 0) The number of iterations between \
each call of the halting_function. If halting_iterations is a Falsy \

35

value (e.g. None, O, False, [], »’) then the halting_function is \

never called.

:param multitesting: (Default: 1) The number of microtests each agent \
performs in the test phase. Must be an integer.

:param multitest_function: (Default: None) The function which takes a \
list of microtest results and turns them into a single result. The \
most likely values for multitest_function will be ’all’ i.e. all \
microtests must pass, and ’any’ i.e. at least one microtest must pass.
:param report_iterations: (Default: None) The number of iterations \
between each report to stdout of the hypotheses with the largest \
clusters.

:param test_phase_function: (Default: The function to use in \
the test phase.

:param hypothesis_string_function: (Default: str) The function to call \
on a hypothesis to turn it into a string, suitable for inclusion in \
the report. If hypotheses are using built-in data types, str is \

often enough, otherwise a custom ’to string’ function must be supplied.
:param max_cluster_report: (Default: None) The maximum number of \
clusters to include in the report.

:param iteration_function: (Default: [synchronous_iterate]) The iteration \
function to call once per iteration.

:param multidiffusion: (Default: 1) The number of agents for a polling \
agent to poll during the diffusion phase. May be an integer or a \
float.\

report_function = functools.partial(
basic_report,
hypothesis_string_function=hypothesis_string_function,
max_cluster_report=max_cluster_report,

handle_reporting = functools.partial(
generic_handle_reporting,
report_iterations=report_iterations,
report_function=report_function,

handle_halting = functools.partial(
generic_handle_halting,
halting_iterations=halting_iterations,
halting_function=halting_function,
max_iterations=max_iterations,

try:

iteration_generator = iteration_function(
swarm=swarm,

36

microtests=microtests,
random_hypothesis_function=random_hypothesis_function,
diffusion_function=diffusion_function,
test_phase_function=test_phase_function,
multidiffusion=multidiffusion,
multitesting=multitesting,
multitest_function=multitest_function,

rng=rng,

for iteration_num, iteration in enumerate(iteration_generator):
handle_reporting(iteration_num, swarm)
if handle_halting(iteration_num, swarm):
break

except KeyboardInterrupt:

pass

return |count_clusters|(swarm)

Defines:

run, used in chunks 39} [41b] [42] [45—48 and[86]
Uses Agent E} count_clusters never_halt passive_diffusion synchronous_iterate
and test_phase|§

(library dependencies [7b)) += <[7Zbl B8~

import itertools

6.5 Write swarm to file

(write swarm function B7b) =
def [write_swarm/(swarm, outfile):
nn ||\

Writes a swarm to a file-like object.\
e

=]

json.dump(
{
’agent count’:len(swarm),
‘clusters’:[count_clusters|(swarm) .most_common(),

1,
outfile,

)

Defines:
write_swarm, used in chunk[39
Uses count_clusters[d9]

37

(library dependencies [7b)) += ©1) <B7d a1

import json

38

B9

6.6 Continuous loop function

(run daemon 39)) =

def [run_daemonl(
swarm,
microtests,
random_hypothesis_function,
diffusion_function,
max_iterations=None,
halting_function=never_halt],
halting_iterations=0,
multitesting=1,
multitest_function=None,
report_iterations=None,
test_phase_function=test_phase],
hypothesis_string_function=str,
max_cluster_report=None,
out_file_name=’/tmp/clusters.json’,
rng=random,

nn ll\

Calls sds.runl in a daemon thread. The daemon can be interacted with
through the command line.

q: Halt the SDS and kill the daemon.
¢: Print the largest clusters to the screen.
w: Write the largest clusters to file.

Anything else is printed to stdout.\

def write_status(swarm):
with open(out_file_name,’w’) as f:

frrite_swarm(swarm,f)

print (’wrote swarm status to’,out_file_name)

control_queue = queue.Queue()
control_queue.put(True)

def swarm_iterator():

print(’starting SDS’)

frun/(
swarm,
microtests,
random_hypothesis_function,
max_iterations,
diffusion_function,
halting_function,
halting_iterations,

39

multitesting,
multitest_function,
report_iterations,
test_phase_function,
hypothesis_string_function,
max_cluster_report,

rng,)

print(’finishing SDS’)
write_status(swarm)
control_queue.task_done()
t = threading.Thread(target=swarm_iterator)
t.daemon = True # Program will exit when only daemons are left.
t.start O
del t
def interface_manager():
while True:
instr = input(
if instr == ’q’:
print("’q’ received quitting")
control_queue.task_done()

break
elif instr == ’¢’:

print (count_clusters|(swarm) .most_common (max_cluster_report))
elif instr == ’w’:

write_status(swarm)
else:
print(°You said:’,instr.upper())

t = threading.Thread(target=interface_manager)

t.daemon = True # Program will exit when only daemons are left.
t.start()

del t

control_queue.join()

print(’done run_daemon’)

return |count_clusters|(swarm)

Defines:
run_daemon, used in chunk[70]

Uses count_clusters never_halt runﬁ test_phase and write_swarm

40

(library dependencies 7o) += <38 Boal>
import queue
import time # for time.sleep
import itertools # for itertools.count
import threading # for threading.Thread

7 Coupled SDS

7.1 Coupled diffusion

(coupled diffusion 41b) =
def [coupled_diffusion|(
swarms,
random,
random_hypothesis_functions,
diffusion_functions,

=]

nn Il\

Performs Coupled diffusion when passed a list of swarms, a list of
random hypothesis functions and a list of diffusion functions. Not
tested with the newest version of sds.frunl.\

for swarm, diffusion_function, random_hypothesis_function in zip(
swarms,
diffusion_functions,
random_hypothesis_functions

diffusion_function(swarm, random, random_hypothesis_function)

Defines:
coupled_diffusion, used in chunk[47]
Uses run 35

41

42]

7.2 Coupled test phase

Multitesting is weird for a coupled test phase, as each test will involve more random
agents, so after ten tests you've hit at least ten agents, and it would be strange to set
them all inactive if a couple were good, or active if lots were bad.

This is of course not weird if you have a component hypothesis, and a data swarm,
and a number of partial evaluations, then multitesting would be to select a hypothesis,
and a data point, and to test it against multiple microtests. It's possible that it only
seems strange because in hyperplane parameter estimation there is only one test. An
alternative is to perform the test with the hypothesis and different data points, and to
update the data point with the result of each test, but only update the hypothesis with
the result of the combined tests.

Comparative testing can be done when multitesting equals 1, but I'll have to record the
randomly selected agents for each master agent.

Now, is it the case that you don’t need multitesting if you have coupled sds? Multi-
testing effectively increases or decreases the test score, but coupled sds weights the test
selection.

Maybe there’s a decision to be made, if I had multitesting equal to 10, and that meant
two hypothesis agents and two data agents, I'd affect the activity of 31 agents. So which
of these options actually makes sense? The activity of the test which made the change
is impossible as in the “all” case or “any” case I can’t tell which one is responsible.

I think the activity of the master agent should be pushed onto all of the other agents
queried in the multitesting. But I don’t think I can be arsed to implement it now.

(coupled test phase[s2) = (91)
def |[generic_coupled_test_phase|(
master_swarm_num,
swarms,
random,
multitesting,
multitest_function,
microtests,
compare,

Illlll\
Performs Coupled test when passed the index of a master swarm, a list
of swarms, and a list of lists of microtests. Not tested with the
latest version of sds.frunl. \

if not multitesting ==
raise NotImplementedError(
"Sorry, I’ve not got around to multitesting for coupled "
"sds yet. When I do, remember to make multitest_function"
" default to None, as it should default to ’all’ when sc"
"alar=True and ’max’ when compare=False")

42

test_results = []
tested_agents = []
for master_agent in swarms[master_swarm_num]:
agents = [random.choice(swarm) for swarm in swarms]
agents[master_swarm_num] = master_agent
hypotheses = tuple(agent.hypothesis for agent in agents)
microtest = random.choice(microtests)
test_results.append(microtest (*hypotheses))
tested_agents.append(agents)
if False and compare:
test_results = [
test_result > random.choice(test_results)
for test_result
in test_results
for test_result, agents in zip(test_results, tested_agents):
for agent in agents:

agent.active = test_result

Defines:
generic_coupled_test_phase, used in chunks[45and 6]
Uses run

43

This is the abandoned code chunk for coupled sds multitesting.
(coupled multitesting) =

test_results = []

for test_num in range(multitesting):
agents = [random.choice(swarm) for swarm in swarms]
agents[master_swarm_num] = master_agent
hypotheses = tuple(agent.hypothesis for agent in agents)
microtest = random.choice(microtests)
test_results.append(microtest (¥*hypotheses))

result = multitest_function(test_results)

for agent in agents:

agent.active = result

44

A5]

7.2.1 Synchronous coupled test phase

(synchronous coupled test phase |45) =

master/slave synchronisation

def [synchronous_coupled_test_phase|(
swarms,
random,
multitesting,
multitest_function,
microtests,
compare,

nn II\
Perform a Synchronous coupled test phase. Not tested with the latest

version of sds.rum. \

master_swarm_num = O

lgeneric_coupled_test_phase|(
master_swarm_num,
swarms,
random,
multitesting,
multitest_function,
microtests,
compare,

)

Defines:
synchronous_coupled_test_phase, used in chunk[73]
Uses generic_coupled_test_phase and run

45

7.2.2 Sequential coupled test phase

=]

@6 (sequential coupled test phase[ie) =
def |sequential_coupled_test_phase|(

swarms,
random,
multitesting,
multitest_function,
microtests,
compare,

nn Il\

Perform a Sequential master coupled test phase. Not tested with the latest

version of sds.frunl.\

for master_swarm_num in range(len(swarms)):

[generic_coupled_test_phase(
master_swarm_num,
swarms,
random,
multitesting,
multitest_function,
microtests,
compare,

Defines:
sequential_coupled_test_phase, used in chunk[73]
Uses generic_coupled_test_phased2/and run

46

7.3 Coupled iteration

@ (coupled iterate[p7) =
def |iterate_coupled|(

swarms,
random_hypothesis_functions,
diffusion_functions,
random,
multitesting,
multitest_function,
report_iterations,
test_phase_function,
microtests,

compare,

nn ll\
Perform an iteration of Coupled SDS. Not tested with the latest

version of sds.run. \

[coupled_diffusion|(
swarms,
random,
random_hypothesis_functions,
diffusion_functions)

test_phase_function(
swarms,
random,
multitesting,
multitest_function,
microtests,
compare,

)

Defines:
iterate_coupled, used in chunk[4§

Uses coupled_diffusion[dIbland run[35]

47

48]

(coupled run ju8)=
def [run_coupled(

swarms,
random_hypothesis_functions,
max_iterations,
diffusion_functions,

random,

multitesting,
multitest_function,
report_iterations,
test_phase_function,
hypothesis_string_function,
max_cluster_report,
microtests,

compare,

nn II\

Perform a Coupled SDS. Not tested with the latest version of sds.run.\

if max_iterations is None:

iterator = itertools.count()

else:

iterator = range(max_iterations)

if compare:

multitest_function max

else:

multitest_function all
try:

for iteration in iterator:

[iterate_coupled|(
swarms,
random_hypothesis_functions,
diffusion_functions,
random,
multitesting,
multitest_function,
report_iterations,
test_phase_function,

48

microtests,
compare,

if report_iterations and iteration % report_iterations ==

clusters_list = tuple(count_clusters|(swarm) for swarm in swarms)

agent_counts = tuple(len(swarm) for swarm in swarms)
active_count = tuple(

sum(clusters.values())

for clusters

in clusters_list)

print(agent_counts,active_count,clusters_list)
except KeyboardInterrupt:

pass

return tuple(count_clusters|(swarm) for swarm in swarms)

Defines:
run_coupled, used in chunk[73]
Uses count_clusters iterate_coupled@ and run

8 Analysis functions

8.1 Count clusters function

This function returns a list of all the clusters in the swarm.

(count clusters function 9 = 1)
def [count_clusters|(swarm):
nnn \

Returns the number of active agents at each hypothesis with at least one
active agent as a collections.Counter.\

return collections.Counter(
agent.hypothesis
for agent
in swarm
if agent.active
)

Defines:

count_clusters, used in chunks[26a} [35] 375} and[64]

49

Boa (library dependencies [7b)) += <HETal 6TH>

import collections

8.2 Calculate Activity

BB (activity function [50b) =
def [activity|(swarm):
i \

Return the proportion of the swarm which are active between 0 and 1.\

=]

agent_count = len(swarm)
active_count = sum(l for agent in swarm if agent.active)

return active_count/agent_count

Defines:

activity, used in chunks[6b} and

50

8.3 Estimate Uniform Background Noise

(estimate noise 51) =
def |estimate_noisel(
microtests,
random_hypothesis_function,
noise_agent_count=100,
iterations=100,

nn I|\

Returns an estimate of the uniform background noise, between O and 1.\

def no_diffusion(swarm, random, random_hypothesis_function):
for agent in swarm:
agent.active = False

agent.hypothesis = random_hypothesis_function(random)

noise_swarm = [Agent|.[initialise|(100)

activities = []

for iteration in range(iterations):
[synchronous_iteratel
noise_swarm,
microtests,
random_hypothesis_function,
no_diffusion,
random,)

activities.append(activity|(noise_swarm))

return sum(activities)/iterations
Defines:
estimate_noise, never used.

Uses activity Agent |5} initialise and synchronous_iterate

51

8.4 Swarm from clusters

A full swarm can be recovered from a clusters object and a count of the total number
of agents.

(swarm from clusters |52) = (91)
def [swarm_from_clusters|(agent_count, clusters):
IRIRI} \

Returns a swarm suitable for use in functions like sds.fuml.

Clusters should be a dictionary or collections.Counter of the

hypotheses of active agents.\
nun

active_agents = (

(
[Agent|(hypothesis=hyp,active=True)
for _ in
range{count)

)

for hyp, count
in clusters.items())

inactive_count = agent_count - sum(clusters.values())
return (

[Agent|.[initialise|(inactive_count)
+ list(itertools.chain.from_iterable(active_agents)))

Defines:
swarm_from_clusters, never used.

Uses Agent 5} initialisepal and run

52

8.5 Pretty printing

This function renders a list of clusters into text.

(pretty print clusters with values|53) = (91)
def |pretty_print_with_values|(clusters, search_space, max_clusters=None):

string_template = "{c:6d} at hyp {h:6d} (value: {e:0.6f})"

cluster_strings [
string_template.format (
c=count,
h=hyp,
e=search_space [hyp])
for hyp, count
in clusters.most_common(max_clusters)

return "\n".join(cluster_strings)

Defines:
pretty_print_with_values, never used.

53

9 Multilayer SDS

9.1 Swarm class

Multilayer SDS mostly uses functions which are very similar to Standard SDS, but a
Swarm class is also required to associate each swarm of agents with a particular function
for generating a random hypothesis.

(swarm classp4) = (91)

class Swarm:
mmn

A multilayer SDS swarm. Best instansiated with fmake_mI_sds]."""

(swarm initialisation function [55a)

(swarm passive diffusion function

(swarm context free diffusion function
(swarm context sensitive diffusion function
(swarm test function

(swarm iterate function

(swarm set activity function

(swarm set hypothesis function [59al)
Uses make_ml_sds

54

Swarm initialisation function

(swarm initialisation function [p5a)= (54)
def __init__(self, size, random_hypothesis_function, lower_layer=None):

self.agents = [
[Agent|(active=False, hypothesis=None)
for _
in range(size)

if lower_layer is Nomne:
lower_layer = []
self.lower_layer = lower_layer

self .random_hypothesis = random_hypothesis_function
Uses Agent

Swarm diffusion function This implements passive diffusion for Multilayer SDS. It’s
not clear whether this could be modified to be identical to the functions written for SDS,
or if the other Diffusion Phase variants need to be reimplemented for Multilayer SDS.

(swarm passive diffusion function |55b) = (54)
@staticmethod
def [passive_diffusion|(swarm, solitarity, random):

for agent_num, agent in enumerate{swarm.agents):
if not agent.active:
polled_agent = random.choice(swarm.agents)
if polled_agent.active and random.random() > solitarity:
swarm.set_hypothesis(agent_num, polled_agent.hypothesis)
else:
agent.hypothesis = swarm.random_hypothesis(
agent_num,
random,

)

Uses passive_diffusion[I3]

55

56l

(swarm context free diffusion function 56) =
O@staticmethod
def [context_free_diffusion|/(swarm, random):

]

for agent_num, agent in enumerate(swarm.agents):
polled_agent = random.choice(swarm.agents)
if agent.active:
if polled_agent.active:
swarm.set_activity(agent_num, False)
agent.hypothesis = swarm.random_hypothesis(
agent_num,
random,
else:
if polled_agent.active:
swarm.set_hypothesis(agent_num, polled_agent.hypothesis)
else:
agent.hypothesis = swarm.random_hypothesis(
agent_num,
random,

)

Uses context_free_diffusion[T4]

56

57

(swarm context sensitive diffusion function |57) =
@staticmethod
def |[context_sensitive_diffusion|/(swarm, random):

]

for agent_num, agent in enumerate(swarm.agents):
polled_agent = random.choice(swarm.agents)
if agent.active:
if (

polled_agent.active
and (agent.hypothesis == polled_agent.hypothesis)

E
swarm.set_activity(agent_num, False)
agent.hypothesis = swarm.random_hypothesis(
agent_num,
random,
)
else:

if polled_agent.active:

swarm.set_hypothesis(agent_num, polled_agent.hypothesis)

else:

agent.hypothesis = swarm.random_hypothesis(
agent_num,
random,

)

Uses context_sensitive_diffusion[l5]

57

Swarm test function The test function is similar to the standard Test Phase only the
result of the test is propagated recursively to all connected agents.

(swarm test function |58a) = (54)
def test(self, microtests, random, multitest=1, multitest_fun=None):

for num, agent in enumerate(self.agents):
microtest = random.choice(microtests)
if multitest ==
self.set_activity(num, microtest(agent.hypothesis))
else:
self.set_activity(
num,
multitest_fun(
random.choice(microtests) (agent.hypothesis)

for _
in range(multitest)

Swarm iterate function This is a convenience function which calls one diffusion phase
followed by one test phase.

(swarm iterate function [58bl) = (54)
def iterate(
self,
microtests,
random,

diffusion_function=passive_diffusion|.__func__,
multitest=1,
multitest_fun=None,

solitarity=1,

diffusion_function(self, solitarity, random)
self.test(microtests, random, multitest, multitest_fun)

Uses passive_diffusion[I3]

58

5%l

Swarm set hypothesis function

(swarm set hypothesis function [5%al) =
def set_hypothesis(self, agent_num, new_hypothesis):

self.agents[agent_num] .hypothesis = new_hypothesis

if len(self.lower_layer) ==
return

for lower_swarm, hypothesis_component in (
zip(self.lower_layer,new_hypothesis)):

lower_swarm.set_hypothesis(agent_num, hypothesis_component)

Swarm set activity function

(swarm set activity function [59b) =
def set_activity(self, agent_num, new_activity):

self.agents[agent_num] .active = new_activity
for swarm in self.lower_layer:

swarm.set_activity(agent_num, new_activity)

59

9.2 Multilayer SDS factory function

To properly implement Multilayer SDS the random hypothesis generation functions
recursively call the random hypothesis generation functions of lower layers, and so a
convenience function has been developed that takes an intended topology of swarms
and composes all the required random hypothesis generation functions.

(make multilayer sds function o) = (91)
def make_ml_sds|(swarm_size, bottom_hyp_functions, topology):

lower_layer = [
Swarm(
size=swarm_size,
random_hypothesis_function=hyp_fun

)
for hyp_fun
in bottom_hyp_functions

for layer_num, swarm_splits in enumerate(topology,start=1):
(construct new layer
lower_layer = layer

top_swarm = lower_layer[0]

return top_swarm

Defines:
make_ml_sds, used in chunks[54and

60

61Db]

(construct new layer |61al) =
layer = []

swarm_offset = O

for split_num, swarm_split in enumerate(swarm_splits):
lower_layer_start = swarm_offset
lower_layer_end = swarm_offset+swarm_split
random_hypothesis_function = functools.partial(

[random_compound_hyp|,
lower_layer[lower_layer_start:lower_layer_end],

new_swarm = Swarm(
size=swarm_size,
lower_layer=lower_layer[lower_layer_start:lower_layer_end],
random_hypothesis_function=random_hypothesis_function)

layer.append (new_swarm)

swarm_offset += swarm_split
Uses random_compound_hyp

(library dependencies 7o) += <[50al 636>

import functools

61

62D

9.3 Random hypothesis, and single diffusion functions

Multilayer SDS requires that a single agent can perform the diffusion process, not the
whole swarm, this is the purpose of the [single_diffusion|function. It also requires
that agents in higher level swarms can randomly generate a hypothesis by calling the
diffusion function on each of the associated agents in the swarms in the lower layer,
this is the purpose of therandom_compound_hyp| function.

Single diffusion function
(single diffusion function |62a) =

def [single_diffusion|/(agent_num, swarm, random):

=]

agent is guaranteed to be inactive
agent = swarm.agents[agent_num]

polled_agent = random.choice(swarm.agents)

if polled_agent.active:
swarm.set_hypothesis(agent_num,polled_agent.hypothesis)
return polled_agent.hypothesis

else:
new_hyp = swarm.random_hypothesis(agent_num, random)
agent .hypothesis = new_hyp

return new_hyp

Defines:
single_diffusion, used in chunk

Random compound hypothesis function

=]

(random compound hypothesis function |62bl) =
def [random_compound_hyp|[(lower_swarms, num, random):

return tuple(
[single_diffusion/(num, lower_swarm, random)
for lower_swarm
in lower_swarms

)

Defines:
random_compound_hyp, used in chunk[6Ta]
Uses single_diffusion[62al

62

9.4 Flatten hypothesis function

Hypotheses generated by Multilayer SDS can be very deeply nested lists, this function
allows the removal of some of the levels of nesting, until a single flat list is returned. A
flat list will be returned if the value if times=len(topology)-1.

(flatten hypothesis[63a) = (91)
def flatten_hypothesis(hypothesis,times):

new_hypothesis = itertools.chain.from_iterable(hypothesis)
if times ==

return list(new_hypothesis)
else:

return flatten_hypothesis(new_hypothesis,times-1)

(library dependencies 7o) += <[6TH 76>

import itertools

9.5 Concurrent Execution

Python has some libraries for concurrent execution, this investigation is to determine if
SDS can be execued concurrently to improve performance.

This is not an investigation into the absolute performance itself, as Python is not the
optimal language for speed of execution, simply to discover which architectures, if any,
offer significant performance improvements.

Python has different methods for when the task is limited by speed of execution (CPU
bound), or speed of data transfer (I/O bound). If it's CPU bound you need to use
multi-processing, multithreading will work fine for I/O bound tasks.

“The strength of threads is shared state. The weakness of threads is shared state (man-
aging race conditions).” From https://dl.dropboxusercontent.com/u/3967849/pyru/_build/html/int
Thinking about Concurrency, Raymond Hettinger, Python core developer.

Some tasks will be soluable within a single thread. More complex problems will need
multiple cores, truly large problems need distributed processing. Second, “multiple
cores” category is becoming less relevant in this world. Don’t spend too much time on
it, if the real issue is in much larger problems.

When you have threads that end, you join the threads, when you have deamon threads
which never terminate, you join the message queue.

Queues are only suitable for when your underlying data flow is a directed acyclic
graph.

A good development strategy is to first use "map" to test the code in a single process
and a single thread before moving to parallel execution.

63

9.6 MSDS Example

64 (multilayer sds example |64) =
import sds # Import sds library
import random
r = random.Random() # Initialise random number generator

Initialise a list of one function per swarm, they take agent_num, and
random, and return a hypothesis component.
random_hyp_functions = [

lambda num, random: random.randrange(10),

lambda num, random: random.randrange(10),

lambda num, random: random.randrange(10),

lambda num, random: random.randrange(10),

Declare a topology, starting with a list of one [[1]] for each swarm,
make a list of lists of ints, where each list of ints means how the
previous numbers will be divided.

topology = [[2,2],[2]]

Create a top swarm, with all its related infrastructure.

swarm = sds.make_ml_sds/(
swarm_size=100,
bottom_hyp_functions=random_hyp_functions,
topology=topology,

)

(initialise search spacele5a))
(initialise microtests

Iterate the swarm 100 times.
for _ in range(100):
swarm.iterate(
microtests=microtests,
random=r,

You can use the free [count_clusters| function on Swarm.agents.
clusters = sds.[count_clusters|(swarm.agents)

print(clusters.most_common(10))
Uses count_clusters and make_ml_sds

64

The search space is a 4 dimensional array of random numbers in the interval [—1, 1].

B5al (initialise search space|65al) = (64)
search_space = [
L
L

r.uniform(-1,1)
for _
in range(10)
]
for _
in range(10)
]
for _
in range(10)
]

for

in range(10)

A list of microtests, they take a hyp, and return a boolean. This isn’t a member variable
of Swarm as only the top swarm is involved in testing.

BBE (initialise microtests [65b) = (64)
microtests = [

lambda h: True,
lambda h: False,
lambda h: search_space[h[0] [0]][h[0][1]1][h[1][0]1][n[1][1]] > O,
lambda h: search_space[h[0][0]][h[0][11]1[h[1]1[0]1][h[1]1[11] > 0.1,
lambda h: search_space[h[0][0]][h[0][1]1]1[h[1]1[0]1][h[1][1]] > 0.2,
lambda h: search_space[h[0][0]]1[h[0][11] [h[1]1[0]1][h[1]1[11] > 0.3,
lambda h: search_space[h[0][0]][h[0][1]1]1[h[1]1[0]][h[1][1]] > 0.4,
lambda h: search_space[h[0][0]][h[0][11]1 [h[1]1[0]1][h[1]1[11] > 0.5,
lambda h: search_space[h[0][0]][h[0][1]1]1[h[1]1[0]][h[1][1]] > 0.6,
lambda h: search_space[h[0][0]][h[0][11] [w[1]1[0]1][w[1]1[11] > 0.7,
lambda h: search_space[h[0][0]][h[0][1]1]1[h[1]1[0]][h[1][1]] > 0.8,
lambda h: search_space[h[0][0]][h[0][11][w[1]1[0]1][n[1]1[11] > 0.9,
lambda h: search_space[h[0][0]][h[0][1]1][h[1]1[0]1][h[1][11] > 1,

65

10 Multilater SDS implemented with the library

This is distinct from the deprecated Class-based version.

(sre/multilayer-sds.py oe) =

import random
import functools
import sds

search_space = [
[1,2,3],
[4,5,6]1,
[7,8,9],

def random_row(rng=random) :
return rng.randrange(len(search_space))

row_swarm = sds.[Agent|.|initialise|(agent_count=100)

def random_col(rng=random) :
return rng.randrange(len(search_space[0]))

col_swarm = sds.[Agent|.[initialise|(agent_count=100)

def new_hyp(lower_agents, new_hyp_functions, rng=random):
nn II\
If lower agents are active then take their hyp, else make the
generate a random hyp.\
return [
new_hyp_function(lower_agent)
for lower_agent, new_hyp_function
in zip(lower_agents, new_hyp_functions)]

def make_ml_swarm(layers, agent_count):
ml_swarm = []
for agent_num in range(agent_count):
agent = MultilayerAgent(
probes=[layer[agent_num] for layer, new_hyp_fun in layers],
new_hyp_functions=[new_hyp_fun for layer, new_hyp_fun in layers],
active=False,

hypothesis=None,)

ml_swarm.append(agent)

66

return ml_swarm

class MultilayerAgent:
def __init__(self, probes, active=False, hypothesis=None):
self.probes=probes
self.active=active
self .hypothesis=hypothesis

def __str__(self):
return "active: {a}, hyp: {h}, probes: {p}".format(
a=self.active,
h=self.hypothesis,

p=self.probes,)

ml_swarm = make_ml_swarm(
layers=[
(row_swarm,random_row), (col_swarm,random_col)

1,
agent_count=100,

def ml_diffuse_layer(layer):
for probe in layer:
ml_diffuse_probe (probe)

def ml_diffuse_probe(probe):
if not probe.active:

polled_probe = random.choice(layer)

if polled_probe.active:
probe.hypothesis = polled_probe.hypothesis

else:
for lower_probe, diffusion_function in probe.probes:

diffusion_function(lower_probe)

probe.hypothesis = tuple(lower_probe.hypothesis for lower_probe in self.prob

print(ml_swarm[0])
print (ml_swarm[1])
print (row_swarm[:3])

print (col_swarm[:3])

def microtest(hyp):
return search_space[hyp.row] [hyp.col] > random.randint(0,10)

Uses Agentfland initialise

67

11 String search implemented with the library

63 (src/string-search.py |68)) = (960)
import random
import functools
import sds

search_space = "xxhellxelloxhexhelxoxxxhxlloxxx"
model = "hello"

def random_hyp(rnd): return rnd.randint(0,len(search_space)-len(model))

def make_microtest(offset):
return lambda hyp: search_space[hyp+offset] == model[offset]

microtests = [make_microtest(offset) for offset in range(len(model))]

clusters = sds.frun|(
swarm=sds.[Agent|.[initialise|(agent_count=1000),
microtests=microtests,
random_hypothesis_function=random_hyp,
max_iterations=300,
diffusion_function=sds.passive_diffusion),
rng=random.Random() ,
report_iterations=10,

print(clusters.most_common())
Uses Agent |5} initialise passive_diffusion and run

68

12 Stochastic Diffusion Sort implemented with the library

69 (src/sds-sort.pyle9)=
import functools
import random
import sds

search_space = [3, 9, 4, 1, 6, 1, 2, 2,3,2,1,7,8,1, 0,0, 4, 8,]

def random_hyp(rnd):
return rnd.randrange(len(search_space))

def test_hyp(hyp):
return -search_space [hyp]

microtests = [test_hyp]

agent_count = 1000

swarm = sds.[Agent|.[initialise|(agent_count)

clusters = sds.(swarm, microtests, random_hyp, test_phase_function=sds.[comparative_t

solution = [(search_spacelhyp]l,count) for hyp, count in clusters.most_common()]

print(clusters.most_common (1))

print (solution)
Uses Agent comparative_test_phase@ initialise and ru.n

69

13 SDS Daemon implemented with the library

70 (src/sds-daemon.py 7o) =
import functools
import random
import sds

search_space, model = "xxhexlxelloxhexhxlxoxxxhxllxxxx",'"hello"

def random_hyp(rnd):
return rnd.randint(0,len(search_space)-len(model))

def test_hyp(offset, hyp):
return search_space[hyp+offset] == model[offset]

microtests = [
functools.partial(test_hyp, offset)
for offset
in range(len(model))

swarm = sds.[Agent|.[initialise|[(agent_count=1000)

max_iterations = None

diffusion_function=sds.passive_diffusion

sds.[run_daemon|(
swarm,
microtests,
random_hyp,
diffusion_function,
max_iterations,
halting_function=sds.mnever_halt],
halting_iterations=0,
multitesting=1,
multitest_function=all,
report_iterations=100,
test_phase_function=sds.ftest_phase],
hypothesis_string_function=str,
max_cluster_report=None,
out_file_name=’./daemon-clusters.json’,
random=random,

print(’done src/sds-daemon.py’)

Uses Agent | initialise|6a} never_halt passive_diffusion run_daemon and test_phase

70

14 Data-driven SDS implemented with the library

This implements data driven sds. It has the problem that you can reach strong stability
with imperfect hypotheses.

See this final state, where model = ’hello’ and hypothesis 6 == ’xello’.

[(CompHyp (hyp=6, data=3), 381), (CompHyp(hyp=6, data=2), 296),

(CompHyp (hyp=6, data=4), 171), (CompHyp(hyp=6, data=1), 152),]
[(6, 1000)]

This shows that all of the 1000 agents have converged on hypothesis 6. They are also
maintaining the data points [1,2,3,4], i.e. not 0, which is the only test which fails.

71

(src/data-driven.py72) =
import random, functools, sds
from collections import namedtuple, Counter
search_space, model = "xxhexlxelloxhexhxlxoxxxhxllxxxx",'"hello"

CompHyp = namedtuple(’CompHyp’,(’hyp’,’data’))

def make_microtest(offset):
return lambda hyp: search_space[hyp+offset] == model[offset]

microtests = [make_microtest(offset) for offset in range(len(model))]
def random_hyp(rnd): return rnd.randint(0,len(search_space)-len(model))
def data_driven_random_hyp(rnd):
return CompHyp (
hyp=random_hyp(rnd),

data=rnd.randrange(len(microtests)),)

def data_driven_microtest(swarm, compound_hyp):
random_agent = random.choice(swarm)

result = microtests[random_agent.hypothesis.datal (compound_hyp.hyp)
random_agent.active = result

return result

swarm = sds.[Agent|.[initialisel(agent_count=1000)

clusters = sds.[run/(
swarm,
microtests=[functools.partial(data_driven_microtest,swarm)],
random_hypothesis_function=data_driven_random_hyp,
max_iterations=300,
diffusion_function=sds.passive_diffusion),
random=random,

no_data_clusters = Counter()
[no_data_clusters.update({hyp:count}) for (hyp,data), count in clusters.items()]
print (clusters.most_common(), no_data_clusters.most_common())

Uses Agent 5} initialise passive_diffusion and run

72

15 Coupled SDS implemented with the library

(src/coupled-sds.py [p3) =

import itertools, random, sds

swarms = [
sds.[Agent|.]initialise|(agent_count=100),
sds.[Agent|.[initialise|(agent_count=101),]

search_space, model = "xxhexlxelloxhexhxlxoxxxhxllxxxx",'"hello"
microtests = [lambda loc,data: search_space[loc+data] == model[datal]

random_hypothesis_functions = [
lambda rnd: rnd.randint(0,len(search_space)-len(model)),
lambda rnd: rnd.randrange(len(model)),

diffusion_functions = (
sds.passive_diffusion),
sds .|context_sensitive_diffusion|,)

test_phase_functions = (
sds.[synchronous_coupled_test_phase|,
sds .[sequential_coupled_test_phase|,)

is_comparative = (False, True)

if is_comparative:
multitest_function

else:
multitest_function

max

all

for test_phase_function, compare in itertools.product(
test_phase_functions,
is_comparative,

clusters = sds.run_coupled|(

sSwarms=swarms,
microtests=microtests,
random_hypothesis_functions=random_hypothesis_functions,
max_iterations=100,
diffusion_functions=diffusion_functions,

random=random,

multitesting=1,

multitest_function=multitest_function,
report_iterations=None,
test_phase_function=test_phase_function,

73

hypothesis_string_function=None,
max_cluster_report=None,
compare=compare,

print(clusters)

Uses Agent E], context_sensitive_diffusion @ initialise @ passive_diffusion @
run_coupled sequential_coupled_test_phase@ and synchronous_coupled_test_phase

74

16 SDS Simulator implemented with the library

75 (sds simulator[75)=
def [simulatel(

scores,
max_iterations=1000,
report_iterations=500,
diffusion_function=passive_diffusion),
agent_count=1000,
multitesting=1,
multitest_function=all,
random=random,
random_hyp=None,

halting_function=never_halt],

halting_iterations=None,

if random_hyp is None:
def random_hyp(rnd): return rnd.randrange(l,len(scores))

if halting_iterations is None:
halting_iterations = report_iterations

def make_microtest(test_num, rnd):
return lambda hyp: rnd.random() < scores[test_num]

microtests = [
lambda hyp: random.random() < scores[hyp]

swarm=Agent|.[initialise|(agent_count=agent_count)

swarm[0] .active = True
swarm[0] .hypothesis = 0

clusters = [run|(
swarm=swarm,
microtests=microtests,
random_hypothesis_function=random_hyp,
max_iterations=max_iterations,
diffusion_functionspassive_diffusion|,
multitesting=multitesting,
multitest_function=multitest_function,
random=random,
report_iterations=report_iterations,
halting_function=halting_function,
halting_iterations=halting_iterations,

75

76)

return clusters

Defines:
simulate, used in chunk[77}
Uses Agent P} initialise|bal never_halt passive_diffusion|l3} and run

(library dependencies [7b) +=

import random

76

16.1 SDS Simulator front end
77 (src/simulator.py[77) =

import random
import functools
import sds
import argparse

if __name__ == ’__main__’:
parser = argparse.ArgumentParser (
description="Simulates SDS",
epilog="",

parser.add_argument (
"_g","-scores",
nargs=’+’,
required=True,
type=float,
help="Scores of the hypotheses",

parser.add_argument (
N_gn s "_geed" s
type=int,
help="Random seed",

parser.add_argument (
"-i" "-iterations",
type=int,
default=1000,
help="Maximum iterations",

parser.add_argument (
"-r","-report-iterations",
type=int,
default=None,
help="Number of iterations between every analysis",

parser.add_argument (
"-n","-agent-count",
type=int,
default=1000,
help="Number of agents in the swarm",

77

diffusion_types = [
‘passive’,
‘context-free’,
‘context-sensitive’,

]

diffusion_functions = [
sds.passive_diffusion],
sds.context_free_diffusion|,
sds.context_sensitive_diffusion|,

parser.add_argument (
"-d","-diffusion",
choices=diffusion_types,
default=diffusion_types[0],
help="Type of diffusion phase",

)

parser.add_argument (
1 _pu R "—pI‘Ob" R
default=0,
type=str,
help="Probability of picking optimal hypothesis",

)

halting_types = [
‘never’,
‘weak’,
threshold’,

]

halting_functions = [

sds.pever_halt],
sds.make_stability_halting_function],
sds.make_instant_threshold_halt_function|,

]

parser.add_argument (
’-a’,’-halt’,
choices=halting_types,
default=halting_types[0],
help=’"Type of halting’,

)

parser.add_argument (
7-1%,%-1lower’?,
type=float,
default=0.5,
dest=’halting_lower_bound’,
help="Activity lower bound for stability halting",

78

parser.add_argument (

’-g’,’-region’,

type=float,

default=0.25,

dest=’halting_stability_region’,

help="Activity stability region for stability halting",
)
parser.add_argument (

o4, ’-time?,

type=int,

default=32,

dest=’halting_stability_time’,

help="Activity stability time for stability halting",

args = parser.parse_args()
print(args)

def random_hyp_fun(P, score_len, rnd):
if rnd.random() < P:
return O
else:
return rnd.randrange(1,score_len)

if args.prob == ’even’:
args.random_hyp = lambda rnd: rnd.randrange(len(args.scores))
else:
args.random_hyp

if args.report_iterations is None:
args.report_iterations = args.iterations // 10

args.diffusion = dict(
zip(diffusion_types,diffusion_functions)
) [args.diffusion]

halting_dict = dict(zip(halting_types,halting_functions))
halting_function = halting_dict[args.halt]

if args.halt == ’never’:
pass
elif args.halt == ’weak’:

halting_function = halting_function(
lower=args.halting_lower_bound,
region=args.halting_stability_region,
time=args.halting_stability_time,)
elif args.halt == ’threshold’:
halting_function = halting_function(

79

lambda rnd: random_hyp_fun(float(args.prob), len(args.scores),

threshold=args.halting_lower_bound,)

print(args)

clusters = sds.[simulatel(
args.scores,
random=random.Random(args.seed),
max_iterations=args.iterations,
report_iterations=args.report_iterations,
diffusion_function=args.diffusion,
agent_count=args.agent_count,
random_hyp=args.random_hyp,
halting_function=halting_function,

print(clusters.most_common())

Uses context_free_diffusion context_sensitive_diffusion make_instant_threshold_halt_function
make_stability_halting_function never_halt passive_diffusion and simulate

80

17 Heterogeneous agents

B (src/heterogeneous-sds.py i) =
import random, functools, sds
from collections import namedtuple

def random_hypothesis_function(random):
return random.randint(0,100)

def test_is_odd(hypothesis):
return hypothesis % 2 == 1

def test_is_even(hypothesis):
return hypothesis % 2 == 0

def test_is_large(hypothesis):
return random.randint(0,100) < hypothesis

def test_is_small(hypothesis):
return not test_is_large(hypothesis)

def is_prime(hypothesis):
return hypothesis in (2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,563,59,61,67,71,73,79,

def is_square(hypothesis):
return hypothesis in (1, 4, 9, 16, 25, 36, 49, 64, 81, 100)

TestList = namedtuple(’TestList’,(’last_agent’,’tests’))

last_agent refers to the number of the first agent which does not use
the tests.

microtests = [
TestList(last_agent=1000,tests=[
is_square,
test_is_small,
test_is_even,
D
TestList(last_agent=2000,tests=[
test_is_large,
is_prime,

D,

def heterogeneous_test_phase(swarm, microtests, random, multitesting=1, multitest_functi
if multitest_function is None:

if compare:
multitest_function = max

81

else:
multitest_function = all

def zip_agents_and_tests(swarm, microtests):
prev_last_agent = O
for last_agent_num, test_list in microtests:
yield (swarm[prev_last_agent:last_agent_num], test_list)
prev_last_agent = last_agent_num
for (
partial_swarm,
partial_microtests,

) in (

zip_agents_and_tests(swarm, microtests)

for _ in sds./generic_test_phase|(
partial_swarm,
partial_microtests,
random,
multitesting,
multitest_function,
compare,

pass

agent_count = 2000
swarm = sds.[Agent|.[initialise|(agent_count)

max_iterations = 4000
diffusion_function = sds.context_sensitive_diffusion|
#diffusion_function = sds.passive_diffusion|

clusters = sds.frun|(
swarm,
microtests,
random_hypothesis_function,
max_iterations,
diffusion_function,
random,
test_phase_function=heterogeneous_test_phase,

print(clusters.most_common(10))

82

Uses Agent E context_sensitive_diffusion @ generic_test_phase @ initialise @
passive_diffusion and run

83

B4

18 Intransitive Dice

(src/sds-intransitive-dice.py [84) =
import random
import sds

A>B > C. In a rumble, B wins most often, A and C win equally

highest = (
(2,2,6,6,7,7),
(1,1,5,5,9,9),
(3,3,4,4,8,8),
)

A>B >C. In a rumble, C wins least often, A and B win equally
lowest = (

A>B>C>D>A

efrons = (
(4,4,4,4,0,0),
(s,s3,3,3,3,3),
(6,6,2,2,2,2),
(5,5,5,1,1,1),

Uses all numbers 1-24, functionaly equivalent to efrons
efrons24 = (

(1,2,16,17,18,19),

(10,11,12,13,14,15),

(6,7,8,9,23,24),

(3,4,5,20,21,22),

)
All dice have an equal mean average roll.
eqavg = (
(r,7,7,7,1,1),
(5,5,5,5,5,5),
(9,9,3,3,3,3),
(8,8,8,2,2,2),
)

the probability that M3 rolls a higher number than M4 is 17/36
the probability that M4 rolls a higher number than M5 is 17/36
the probability that M5 rolls a higher number than M3 is 17/36
17/36 == 0.47222222222

miwin = (

84

(1’2’5’6’7’9)’
(1,3,4,5,8,9),
(2’3’4’6’7’8)’

Slight deviant from traditiomal
deviant = (

(1,1,3,5,5,6),
(2’3’8’4’4’5)!
(1’2’2’4’6’6)’

extreme = (
(r,7,7,7,-100,-100),
(5,5,5,5,5,5),
(1000000,1000000,3,3,3,3),
(8,8,8,2,2,2),

dice = extreme

def new_hyp(rng=random):
return rng.randrange(len(dice))

def microtest(hyp):
return random.choice(dicelhypl)

swarm=sds .[Agent|.[initialise|[(1000)

for i in range(1000):
clusters = sds.run(

swarm=swarm,
max_iterations=1,
random_hypothesis_function=new_hyp,
diffusion_function=sds.[context_free_diffusion|,
microtests=[microtest],
test_phase_function=sds.[comparative_test_phase|,
report_iterations=None,)

print(clusters.most_common())
Uses Agent comparative_test_phase@ context_free_diffusion initialise and run

85

19 True Restaurant Game
B8l (src/restaurant-game.py [8e)=
import random, functools, sds
from collections import namedtuple
from pprint import pprint
cuisine_count = 3

restaurant_count = 10

agent_count = 1000

swarm = sds.[Agent|.[initialise|(agent_count)

microtests = None

max_iterations = 10000

diffusion_function = sds.passive_diffusion

def clip(num, smallest, largest):
return min(largest,max(num, smallest))

def make_restaurant(cuisine_count):

return sorted(
0] + [
random.random()
for

in range(cuisine_count-1)

restaurants = [
make_restaurant(cuisine_count)
for restaurant_num
in range(restaurant_count)

def to_probabilities(r):

return [t-p for p,t in zip(r,r[1:] + [11)]
#pprint([to_probabilities(r) for r in restaurants])
def generic_random_hypothesis_function(restaurant_count, random):

return random.randrange(restaurant_count)

86

random_hypothesis_function = functools.partial(
generic_random_hypothesis_function,
restaurant_count)

def make_taste(cuisine_count):
general_happiness = random.gauss(0,1)
return [

clip(random.gauss(2/3,0.5)+general_happiness,smallest=0,largest=1)
for

in range(cuisine_count)

#taste = [1] * cuisine_count
#taste[random.randrange(cuisine_count)] = 0
return taste
tastes = [
make_taste(agent_count)
for agent_num
in range(agent_count)
def pick_dish(restaurant):
num = random.random()
return sum(l for x in restaurant if num >= x)
def taste_test(restaurant, agent_tastes):
dish = pick_dish(restaurant)
agent_taste = agent_tastes[dish]

return random.random() < agent_taste

def exhaustive_test(tastes, restaurants):

restaurant_scores = []

for r_num, restaurant in enumerate(restaurants):
probs = to_probabilities(restaurant)
agent_scores = []
for taste in tastes:

87

def

agent_scores.append(
sum(dish*prob for dish,prob in zip(taste,probs))
)
restaurant_score = sum(agent_scores)/len(tastes)
restaurant_scores.append(
(r_num, restaurant_score)

return restaurant_scores

restaurant_game_test_phase(
swarm,

microtests,

random,

*xkwargs

for agent_num, agent in enumerate(swarm):

agent_tastes = tastes[agent_num]

agent.active = taste_test(
restaurants[agent.hypothesis],
agent_tastes)

clusters = sds.frun|(

swarm,

microtests,

random_hypothesis_function,

max_iterations,

diffusion_function,

random,

report_iterations=1000,
test_phase_function=restaurant_game_test_phase,

print(clusters)

truth = exhaustive_test(tastes, restaurants)

scores = [score for num,score in truth]

for

hyp, count in clusters.most_common() :

print ("Restaurant {hyp} has {c} agents, and a score of {s}".format(
hyp=hyp,
c=count,
s=scores [hyp],

))

88

truth.sort (key=lambda x:-x[1])
print (truth[:10])

Uses Agent |5} initialise passive_diffusion and run

89

20 Library definition

g0 (src/library/setup.pyo0) =

from setuptools import setup

setup(
name=’gds’,
version=’0.1.57,
packages=[’sds’],
description=’Stochastic Diffusion Search’,
keywords = [’swarm’,’artificial’,’intelligence’,’search’],
classifiers = [
’Development Status :: 3 - Alpha’,

’Intended Audience :: Developers’,
’Intended Audience :: Science/Research’,
’License :: 0SI Approved :: Apache Software License’,

’Operating System :: 03 Independent’,
’Programming Language :: Python :: 3’,
’Programming Language :: Python’,
’Topic :: Scientific/Engineering :: Artificial Intelligence’,
1,
url=’http://www.aomartin.co.uk/sds-library/’,
author=’Andrew Owen Martin’,
author_email=’a.martin@gold.ac.uk’,
long_description="""\
A library which implements the main variants of Stochastic Diffusion
Search (SDS), and provides a convenient front end.

Stochastic Diffusion Search (SDS) is a generic population-based search
method. SDS agents perform cheap, partial evaluations of a hypothesis (a
candidate solution to the search problem). They then share information
about hypotheses (diffusion of information) through direct one-to-one
communication. As a result of the diffusion mechanism, high-quality
solutions can be identified from clusters of agents with the same
hypothesis.

This is a library used during the writing of my PhD thesis, I will
publish full documentation and host the code on GitHub once the design
has settled down and I have submitted my thesis. Until then, feel free
to email me.

SDS has a Scholarpedia page:
http://www.scholarpedia.org/article/Stochastic_diffusion_search

A list of papers written on SDS can be found in the Stochastic Diffusion
Search paper repository, maintained by the author of this module:

http://www.aomartin.co.uk/sds-repository/publications.html
e

)

90

(src/library/sds/__init__.py1)=
(library dependencies [7b))
(agent class definition [5)
(agent namedtuple
(generic test phase function
(test phase function
(comparative test phase function)
(generic single agent test function
(generic diffusion function
(generic single agent diffusion function
(passive diffusion function

(context free diffusion function
(context sensitive diffusion function

(synchronous iterate function 27)
(asynchronous iterate function 29)
(parallel iterate function
(parallel update state function
(never halt function 21b))

(stability halt function [22))

(instant threshold halt function
(threshold time halt function

(run function

(handle halting function 25))

(basic report function
(handle reporting function
(run daemon

(coupled diffusion 41b))

(coupled test phase [42))
(synchronous coupled test phase
(sequential coupled test phase @

(coupled iterate
(coupled run

(count clusters function |49)
(write swarm function
(activity function
(estimate noise

(swarm from clusters

(pretty print clusters with values
(sds simulator

(swarm class
make multilayer sds function

{
(single diffusion function
(random compound hypothesis function

(flatten hypothesis

91

(src/library/LICENSE.txt(92) =
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (507%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modificatioms,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work

(an example is provided in the Appendix below) .

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including

92

the original version of the Work and any modifications or additions

to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent

to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate

as of the date such litigation is filed.

. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You

meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices

93

stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modificatiomns, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditioms.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licemnsor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

94

implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemmnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don’t include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page'" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

95

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

(src/library/MANIFEST.in peal) =
include LICENSE.txt
include doc/string_search.py
include doc/documentation.pdf
include doc/tutorial.html
include doc/tutorial.pdf

(src/library/README.rst p6b) =

This is the readme for the sds module.

(src/library/doc/string-search.py|96c) =
(sre/string-search.py

20.1 Deploying to PyPi

I deployed this to PyPi by going into thesis/src/library and running python3 setup.py
sdist upload.

I deployed an update by updating the version line in (src/library/setup.py [p0), running
make pip_install and running python setup.py sdist upload in the virtual envi-
ronment.

21 Mathematical library definition

(src/mathlib/setup.py 96d) =

from setuptools import find_packages, setup

setup(
name=’sdsmath’,
version=’0.1.1°,
packages=find_packages(),
url=’www.aomartin.co.uk?’,
author=’Andrew Owen Martin’,
author_email=’a.martin@gold.ac.uk’,

96

97a

97bl

(src/mathlib/sdsmath/sdsmath.py[97a) =

(math library depend

encies 97b))

e

diffusion rate model |(never defined))

(
<thSiC model [(never defined)|)
(

minimum stability model |(never defined))

(math library dependencies 97b]) =

from
from
from
from
from

sSympy
Sympy
Sympy
sympy
Sympy

import
import
import
import
import

Symbol as _Symbol

Eq as _Eq

solveset as _solveset
latex as _latex
simplify as _simplify

(src/mathlib/sdsmath/__init__.py|97d)=
from .sdsmath import *

(src/mathlib/LICENSE.py po7d) =

(src/mathlib/MANIFEST.in [97e) =

(src/mathlib/README.rst p7f) =

This is the readme for the sdsmath module.

97

21.1 Interacting Markov Chain Model

This is the interacting markov chain model implemented in Sympy.

8] (interacting markov chain model pg) =
import sympy

pminus, pm, N = sympy.symbols(’p~{-} p_{m} N’)

a = 2+(1-pminus)*(1-pm)
pil = (a-1 + sympy.sqrt(pow(a-1,2) + 2*a*pm#*(1-pminus)

)) / a
(1 - sympy.sqrt(pow(a-1,2) + 2*a*pm*(l-pminus))) / a

pi2
n = ((N+1)*pil-1,(N+1)#*pil)
En = Nxpil
sigma = sympy.sqrt(N * pil * pi2)
def interacting_markov_chain_model (pminus_val, pm_val, N_val):
subs = [(N,N_val), (pm,pm_val), (pminus,pminus_val)]
ngeq, nleq = (n_eq.subs(subs) for n_eq in n)
return {
’n >=’:ngeq,
’n <=’:nleq,

’E[n]’:En.subs(subs),
’sigma’:sigma.subs(subs),

98

	Agent
	Initialisation
	Agent iterable function
	Agent tuple

	Test phase
	Standard test phase
	Comparative test phase
	Generic test phase
	Generic single agent test

	Diffusion phase
	Active? Dual?
	Passive diffusion
	Context-free diffusion
	Context-sensitive diffusion
	Generic diffusion
	Generic single agent diffusion
	Multidiffusion
	Probabilistic Rounding Function

	Halting functions
	Never halt function
	Stability halt function
	Instant threshold halt function
	Threshold time halt function
	Handle halting

	Reporting functions
	Basic report
	Handle reporting function

	Iteration functions
	Single iteration function
	Asynchronous iteration function
	Parallel iteration function
	Update state function

	Run function
	Write swarm to file
	Continuous loop function

	Coupled SDS
	Coupled diffusion
	Coupled test phase
	Synchronous coupled test phase
	Sequential coupled test phase

	Coupled iteration

	Analysis functions
	Count clusters function
	Calculate Activity
	Estimate Uniform Background Noise
	Swarm from clusters
	Pretty printing

	Multilayer SDS
	Swarm class
	Multilayer SDS factory function
	Random hypothesis, and single diffusion functions
	Flatten hypothesis function
	Concurrent Execution
	MSDS Example

	Multilater SDS implemented with the library
	String search implemented with the library
	Stochastic Diffusion Sort implemented with the library
	SDS Daemon implemented with the library
	Data-driven SDS implemented with the library
	Coupled SDS implemented with the library
	SDS Simulator implemented with the library
	SDS Simulator front end

	Heterogeneous agents
	Intransitive Dice
	True Restaurant Game
	Library definition
	Deploying to PyPi

	Mathematical library definition
	Interacting Markov Chain Model

